
4

A Study on the Use of Checksums for Integrity Verification
of Web Downloads

ALEXANDRE MEYLAN, Kudelski Security, Switzerland
MAURO CHERUBINI, University of Lausanne (UNIL), Switzerland
BERTIL CHAPUIS, University of Applied Sciences and Arts (HES-SO/HEIG-VD), Switzerland
MATHIAS HUMBERT, armasuisse S+T, Switzerland
IGOR BILOGREVIC, Google Inc., Switzerland
KÉVIN HUGUENIN, University of Lausanne (UNIL), Switzerland

App stores provide access to millions of different programs that users can download on their computers.
Developers can also make their programs available for download on their websites and host the program
files either directly on their website or on third-party platforms, such as mirrors. In the latter case, as users
download the software without any vetting from the developers, they should take the necessary precautions to
ensure that it is authentic. One way to accomplish this is to check that the published file’s integrity verification
code – the checksum – matches that (if provided) of the downloaded file. To date, however, there is little
evidence to suggest that such process is effective. Even worse, very few usability studies about it exist.

In this paper, we provide the first comprehensive study that assesses the usability and effectiveness of
the manual checksum verification process. First, by means of an in-situ experiment with 40 participants and
eye-tracking technology, we show that the process is cumbersome and error-prone. Second, after a 4-month
long in-the-wild experiment with 134 participants, we demonstrate how our proposed solution – a Chrome
extension that verifies checksums automatically – significantly reduces human errors, improves coverage,
and has only limited impact on usability. It also confirms that, sadly, only a tiny minority of websites that
link to executable files in our sample provide checksums (0.01%), which is a strong call to action for web
standards bodies, service providers and content creators to increase the use of file integrity verification on
their properties.

Additional Key Words and Phrases: checksums, integrity, security, usability, web downloads

ACM Reference Format:
Alexandre Meylan, Mauro Cherubini, Bertil Chapuis, Mathias Humbert, Igor Bilogrevic, and Kévin Huguenin.
2020. A Study on the Use of Checksums for Integrity Verification of Web Downloads. ACM Trans. Priv. Sec. 24,
1, Article 4 (August 2020), 35 pages. https://doi.org/10.1145/3410154

1 INTRODUCTION
App stores are a very popular means for Internet users to get access to millions of apps for their
computers and mobile devices. The most popular ones – such as Apple’s, Google’s, and Microsoft’s
– offer a curated set of apps that are easy to access for users, and they simplify the distribution for
developers. However, app stores usually impose certain conditions on the software they are willing
to publish. Furthermore, developers may face additional challenges when publishing on them,

This article is a revised and extended version of a paper that appears in the Proceedings of the ACM Conference on Computer
and Communications Security (CCS 2018), Cherubini et al. [1].
Authors’ addresses: AlexandreMeylan, alexandre.meylan@kudelskisecurity.com, Kudelski Security, Cheseaux-sur-Lausanne,
Switzerland; Mauro Cherubini, mauro.cherubini@unil.ch, University of Lausanne (UNIL), Faculty of Business and Eco-
nomics (HEC), Lausanne, Switzerland; Bertil Chapuis, bertil.chapuis@heig-vd.ch, University of Applied Sciences and Arts
(HES-SO/HEIG-VD), Institute for Information and Communication Technologies (IICT), Yverdon-les-Bains, Switzerland;
Mathias Humbert, mathias.humbert@armasuisse.ch, armasuisse S+T, Cyber-defence Campus, Thun, Switzerland; Igor
Bilogrevic, ibilogrevic@google.com, Google Inc. Zurich, Switzerland; Kévin Huguenin, kevin.huguenin@unil.ch, University
of Lausanne (UNIL), Faculty of Business and Economics (HEC), Lausanne, Switzerland.

2020. 2471-2566/2020/8-ART4 $15.00
https://doi.org/10.1145/3410154

ACM Trans. Priv. Sec., Vol. 24, No. 1, Article 4. Publication date: August 2020.

https://doi.org/10.1145/3410154
https://doi.org/10.1145/3410154

4:2 Meylan et al.

such as long review and validation times, technical restrictions (e.g., sandboxing), incompatibility
with software licenses, and substantial commissions [2]. For developers, a common alternative
for distributing their software is to include a download link on their own websites, like for the
popular VLC program; in this case, the program file can be hosted either on the website itself or on
a third-party web hosting platform (e.g., mirrors, content delivery networks).
Hosting software on a website has several advantages for the developers, but it could also

negatively affect the users. In particular, security is an important concern when downloading
files from the Internet. Users could be tricked into downloading corrupted software that contains
malware, which could impair the performance of their machine or even steal personal data from it.
This scenario is not limited to the case where the software is hosted on a malicious platform, but can
also happen if a legitimate hosting platform is compromised. In any case, by choosing to host their
software on the web, developers also accept the risk that it could be accidentally or intentionally
modified in an unpredictable way. Recently, both the popular BitTorrent client Transmission [3]
and the Linux Mint distribution [4] were corrupted; the former by a ransomware and the latter
with a backdoor. Such corruptions are particularly problematic for privacy and security software –
such as Tor – used by at-risk populations such as journalists and political dissidents. In general, it
is crucial for website administrators to make sure that the content of the files downloaded by their
visitors through external links matches the content of the files at the time the link was created.

To mitigate such threats, developers can publish alphanumeric strings whose purpose is to enable
users to verify that the downloaded software has not been accidentally or intentionally modified
from the moment it was published and linked by its developer. Such strings, called checksums,
are commonly used in the open-source community but also by companies such as Google (for
their software Android Studio and Golang). Checksums are usually derived from the output of
cryptographic hash functions (such as SHA-256) in the form of sequences of alphanumeric digits
called digests, and are either displayed on the download webpage or are provided in a separate file.
Users can then verify the integrity of the file they download based on the provided checksums.1
However, there is currently no standard or common way for users to verify such checksums, other
than manually executing dedicated commands on the operating system’s terminal.2 Worse yet,
users are required to visually compare such long sequences of characters, which has been proven to
suffer from usability issues and to be prone to errors [5, 6], in contexts other than web downloads
(e.g., PGP key fingerprint verification). Other solutions, such as code-signing, also suffer from some
limitations and only partially address the aforementioned problem. These issues call for automated
and reliable methods.
To the best of our knowledge, no standard or practical solutions have been proposed for auto-

matically verifying web downloads. Moreover, the research community has mostly overlooked the
important topic of the integrity of programs downloaded on the Web. Our research fills that gap
and addresses these important challenges, by first performing a thorough analysis of prevalence of
the threat, the usability and effectiveness of checksums for the visual verification of the integrity
of web downloads, and then by proposing technical solutions to the issues we identify. Specifically,
our contributions are as follows:

• We carry out the first comprehensive study on checksums verification for the integrity of
web downloads. To do so, we conduct an in situ experiment with 40 participants that uses
an eye-tracker to precisely evaluate how users verify checksums. It is the first time that

1Note that checksums only enable users to verify that the file they downloaded is indeed the one the website administrator
intended to share. They do not provide any guarantee that the file is safe to execute.
2By default, the major operating systems include only command-line tools to compute checksums, such as shasum for
macOS and Linux and certutil for Windows.

ACM Trans. Priv. Sec., Vol. 24, No. 1, Article 4. Publication date: August 2020.

A Study on the Use of Checksums for Integrity Verification of Web Downloads 4:3

eye-tracking technologies are used for studying usability and attention during the checksum
verification process.

• We develop an automated checksum verification browser extension that alerts users when
there is a mismatch between the checksum computed from the downloaded file and that (or
those) available on the developer’s website, when the checksum is displayed in the page.

• We conduct a 4-month in-the-wild experiment with 134 participants in order to study their
download and browsing behavior, their exposure and understanding of checksums, and their
reactions to our browser extension.

• To address the usability and effectiveness issues of checksums, we propose an extension to the
current World Wide Web Consortium (W3C) specification for subresource integrity (SRI) [7];
it standardizes the use of checksums for external resources such as JavaScript files, to cover
download links of program files. Our solution enables developers to rely on a standardized
method that significantly reduces the user burden of checksum verification.

Our in-situ experiments demonstrate that the verification process is taxing, with a median of
around ten back-and-forth that the eyes of the participants have to do between the checksum shown
on the Web page and the output of the program used to compute the checksum of the downloaded
file. It also demonstrates that, despite being explicitly asked to verify the checksums, more than
one third of our participants fail to detect the mismatch (i.e., partial pre-image attack) between
the checksum displayed on a fake download webpage and the one computed from the (corrupted)
downloaded file. Our in-depth eye-tracking analysis shows that users pay more attention to the
first digits of the checksums, which reduces drastically the security provided by such checksums. It
also suggests that failure to detect mismatch between checksums is associated with a low number
of fixations. Finally, the user feedback collected during the test of the extension that automates the
process shows a good desirability of verification mechanisms integrated in web browsers.
Our in-the-wild experiment shows that our participants regularly download files that could

include malware (e.g., binary executable files but also PDF files), which would therefore benefit
from integrity verification. Specifically, in our experiment, 7% of all the downloaded files were
binary executables and 56% were PDFs. It also demonstrates that only very few download webpages
in our deployment (0.02%) currently provide checksums for integrity verification. Furthermore, it
shows that the vast majority of our participants (88,6%) do not even notice checksums, know or
understand their purpose, or know how to use them. It also suggests that users of our browser
extension feel more secure, as compared to those who do not use it.
Compared to the conference version of this article [1], we focus on the in-situ experiment and

substantially improve and extend the analysis of the data from the eye-tracking device. In particular,
we include and analyze results on how users navigate between the checksums specified on the
webpage and those computed in the terminal after download, and on the attention users devote
to the different parts of the user interface of the extension. Our results shed light on the visual
process of checksum (or fingerprints in general) verification and provide actionable feedback for
the design of an automated tool. In addition, we clarify the system and threat models and include
a performance evaluation of the browser extension (in order to assess the delays incurred by
checksum verifications) and we elaborate on the feedback provided by the participants of the
experiment. Moreover, we describe and report in detail on our 4-month in-the-wild experiment,
which was conducted after our original work [1]. Finally, we make available to the community the
dataset we collected through the eye-tracking device. We also open-source the browser extension
on GitHub and distribute it on the Chrome Web Store.
The rest of the article is organized as follows. We survey the related work in Section 2. We

introduce the system and threat models as well as the background about checksums and file integrity

ACM Trans. Priv. Sec., Vol. 24, No. 1, Article 4. Publication date: August 2020.

4:4 Meylan et al.

verification in Section 3. We describe the proposed solutions – i.e., the browser extension – in
Section 4, and present the in situ user experiments with eye-tracking in Section 5. We present the
in-the-wild experiment in Section 6. We discuss the main findings and limitations of our work in
Section 7. We conclude the article in Section 8.

2 RELATEDWORK
From a high-level perspective, our work can be framed within the broader category of online
security behaviors as it touches upon the subject of security warnings through the lenses of file
integrity verification.

2.1 Download Behavior
Internet users are increasingly exposed to online security threats [8], and their security-related
behaviors are influenced by a combination of cognitive (i.e., understanding of the related threats),
social, and psychological components (i.e., time pressure to complete the related task) [9]. Often
the weakest link – leading to many successful cyber-attacks – is the insufficient knowledge of the
employees, which led to many successful cyber-attacks in the UK [10]. The download behavior is
often also influenced by security recommendations [11–13], meaning that users evaluate digital-
security recommendations based on the trustworthiness of the source of the advice; users might trust
knowledgeable peers more than the source over the content of the recommendation. Unfortunately,
none of these studies focused specifically on Internet downloads, which is one of the goals of this
study.

2.2 Effectiveness of Security Warnings
A security warning is a cautionary message usually delivered by the operating system or an
app to users when they are about to perform an action on their device that could have negative
consequences. Such actions include downloading or opening a file containing a virus, visiting a
website that contains malware, or simply installing an app from an untrusted source. The users
can either act on such warnings or ignore them. Over the past decade, the research community
has extensively studied how users interact with such warnings, and whether the warnings are
effective and understandable [14–22]. These studies are relevant to our work as we also designed
an intervention through a browser extension.
The research on security warnings has shown that security warnings are, on the one hand,

effective at reducing the rate at which users perform potentially harmful actions after they have
been warned [16, 21, 22]. On the other hand, users tend to ignore such warnings due to their
excessive frequency [23] and habituation effects [15]. In addition to the content, the design matters
as well; a study by Akhawe and Felt [16] showed that users of one browser proceeded to potentially
malicious websites twice as often as the users of the other browser, when presented with two
different SSL warnings from two web browsers; a similar finding was made by Bravo-Lillo et al. [23],
who showed that by changing the user interface (UI) elements in the warning to highlight the
most important elements for the users, they can reduce by half the installation rate of potentially
malicious apps.
When looking at what motivates users for act or ignore security warnings and advice, sev-

eral studies point out that the most important factors are the perceived security/convenience
trade-off and the perceived risk of pursuing potentially dangerous actions [24–26]. Yet, the risks
associated with specific actions are often misunderstood by end users or even by developers and
webmasters [27].

ACM Trans. Priv. Sec., Vol. 24, No. 1, Article 4. Publication date: August 2020.

A Study on the Use of Checksums for Integrity Verification of Web Downloads 4:5

2.3 File Integrity Verification
Several works have studied, by means of online surveys, the security and usability of different
fingerprint representations for authentication and integrity verification. Hsiao et al. have compared
the speed and accuracy of hash verification with various textual and visual representations [5].
Their between-subjects study with 436 participants is the first to show that users struggle with
comparing long fingerprints. More recently, Dechand et al. have studied the performance and
usability of six textual fingerprint representations [6]. Their experiment with 1,047 participants
demonstrates that the state-of-the-art hexadecimal representation is prone to partial pre-image
attacks more than others, with more than 10% of attacks being missed by the users. Similarly, Tan
et al. evaluate the usability and security of eight textual and visual fingerprint representations [28].
The results of their 661-participant experiments suggest that, when security is paramount, the best
strategy is to remove the human from the loop and automate the verification process, which the
authors did not test.

Research on secure messaging also provides us with relevant findings on the usability and security
of fingerprints for authenticating the communicating entities. In their systematization of knowledge
on secure messaging, Unger et al. emphasize the usability and adoption limitations of manual
fingerprint verification [29]. Moreover, they mention short authentication strings, which rely on
truncated cryptographic hashes, as a more usable alternative to fingerprints. In a 60-participant
study on secure communication tools, Abu-Salma et al. show that fingerprints are not understood
by participants, thus indirectly hindering the adoption of such tools [30]. Vaziripour et al. evaluate
the usability of the authentication processes in three popular messaging applications (WhatsApp,
Viber, Facebook Messenger) through a two-phase study involving 36 pairs of participants [31].
These participants notably report that fingerprint strings are too long, and some WhatsApp users
appreciate being able to scan QR codes instead of having to compare long digit strings. Note that
in these contexts, unlike for web downloads, automating fingerprint comparison is not possible
because fingerprints usually come from a different channel. On the practical side, a number of
programs (including browser extensions [32, 33]) to compute and verify checksums with graphical
user interface are available. Yet, they only enable users to compute checksums, not to automatically
verify them against those extracted from webpages.

In addition to checksums, digital certificates can be used to certify the authenticity and integrity
of programs. However, some shortcomings of digital certificates include their cost, certificate
validation issues, and private key (of developers and certification authorities) compromise [34, 35].
In fact, digital certificates (used for code-signing) do not provide the same guarantees that checksums
do: Certificates guarantee that the downloaded files have been produced by certain developers,
whereas checksums guarantee that the downloaded files are those the website administrators
intended to point to. Therefore, checksums do not provide protection in the case where a malicious
website administrator includes a link to a corrupted version of a program (e.g., Transmission). And
certificates do not provide protection in the case where a hacker replaces a program file with a
corrupted version of the program signed with the (valid) account of a malicious developer (or with
a stolen account).

In our work, we focus on one aspect that was neglected by prior research: What is the behavior
of the users when they (are asked to) verify file integrity by using checksums? Instead of testing
different design of the checksum, we focus on the process by which participants compare an
hexadecimal checksum with the output of the hash functions. In summary, we go beyond the sole
investigation of manual fingerprint comparison, and we consider the overlooked context of web
download integrity. We also employ eye-tracking techniques to gain a deeper understanding of
how users perform fingerprint/checksum comparisons.

ACM Trans. Priv. Sec., Vol. 24, No. 1, Article 4. Publication date: August 2020.

4:6 Meylan et al.

2.4 Automating Integrity Verification
In certain contexts, checksum verification is automated. It is the case with W3C’s subresource
integrity, described below in the background section. It is also the case of package managers such
as brew (macOS) or aptitude (Linux), which enable users to download packages and programs from
so-called repositories. They automatically compare the checksums of the downloaded packages
to those specified in the package description: A typical brew “cask” package contains a link to
an installer hosted on an external platform, a command line to run it and a checksum to verify
its integrity (see that of VLC3). Such package managers, however, are mostly popular on UNIX
systems and they are used mainly by experienced users (e.g., users familiar with the terminal).4
Note that package managers are also subject to attacks [36].

3 SYSTEM AND THREAT MODEL
In this section, we describe the general system and threat model, as well as the necessary technical
background.

3.1 System and Threat Model
We consider a website hosted on a web server. The website contains a download page that includes
a link to a program hosted on an external web server (a hosting platform, typically on a mirror or a
content delivery network) managed by a different entity. The original website is managed by the
developers. We consider an adversary who is able to tamper with the program files hosted on the
external server (e.g., the operator of the external hosting platform or a hacker) or to tamper with
the insecure (e.g., no SSL/TLS) communication with the external server (e.g., the user’s Internet
service provider or a hacker), as illustrated in Figure 1.
Note that such a situation could also occur when the download webpage and the program are

hosted on the same server but the adversary is only able to tamper with the program file (e.g.,
because it has access to only certain directories on the server).

In order to enable users to check the integrity of the files they download from the external server,
the download page contains the checksum of the program file, which is generated as describe
hereafter.

3.2 Checksums
A checksum is a fixed-size binary string derived from a block of data of arbitrary size (e.g., a file): it
is used to verify the integrity of the data, i.e., whether the data has been tampered with after the
checksum was created. In adversarial settings, the output of cryptographic hash functions, called
hashes or digests, are used as checksums. Checksums are usually represented as hexadecimal strings
(e.g., 2cae915ae0e...), the sizes of which usually range from 32 to 128 digits (i.e., 128-512 bits).
Cryptographic hash functions enjoy three core properties: pre-image resistance, second pre-image
resistance, and collision resistance [37]. In the settings of web downloads hosted on external servers,
the second property is key: It guarantees that it is computationally hard for an adversary with
access to the original file (and its hash) to forge a different file (e.g., a malware) that has the same
hash. Essentially, an adversary would have to rely on brute-force attacks, that is, to perform an
exhaustive search of slightly modified versions of the file until it finds one with a hash that matches
that of the original file. An adversary can also perform a brute-force attack to forge a file with

3https://github.com/caskroom/homebrew-cask/blob/master/Casks/vlc.rb
4As more and more graphical front-ends to UNIX package managers are available (e.g., Synaptic, Ubuntu Software Center),
package managers do not require knowledge of the terminal anymore and become more accessible to inexperienced users,
just like app stores.

ACM Trans. Priv. Sec., Vol. 24, No. 1, Article 4. Publication date: August 2020.

https://github.com/caskroom/homebrew-cask/blob/master/Casks/vlc.rb

A Study on the Use of Checksums for Integrity Verification of Web Downloads 4:7

Download
<pre>

SHA1: 12412df20434da3598526d14e3c95f466827a4d7
</pre>

https://download.website.com http(s)://cdn.com

! website/
" app.exe

!

!

Fig. 1. System and threat model. A webpage, hosted on server download.website.com (assumed secure) and
served over SSL/TLS, contains a download link (i.e., an HTML a element) to a file hosted on a different server
(and domain) cdn.com. The file hosted on the external server could be corrupted and the communication
between this external server and the user could be tampered with by the adversary. The download webpage
contains a checksum so that users can verify the integrity of the downloaded file.

a hash that only partially matches that of the original file, namely partial pre-image attacks. In
addition, hash functions usually ensure that even a minor change (even just one bit) in the input
data results in a completely different output hash.
Popular cryptographic hash functions include MD5, SHA-1, and SHA-2. MD5 was one of the

first proposed cryptographic hash functions; it was broken in the late 1990’s and its use is strongly
discouraged. SHA-1 was recommended by the National Institute of Standards and Technology
(NIST) until 2015, when it was broken. SHA-2 is the most popular hash function today and it is
currently the recommended (by NIST) algorithm for file integrity verification [38].
To verify the integrity of a file, users have to execute a dedicated program that takes the file as

input and compare the output (i.e., checksum) with that specified on the download page.

3.3 Subresource Integrity
Subresource integrity (SRI) was introduced by the W3C in 2016 [7]. It specifies that, for external
resources linked to a webpage through an HTML element, an integrity attribute containing a
checksum can be added to the element.5 This mechanism was introduced to detect corruption of
externally hosted scripts. Therefore, in its current form, SRI covers only two elements: the link and
script. These elements are used to include external style sheets (e.g., cascading style sheets–CSS)
and scripts (e.g., JavaScript–JS) respectively. The verification of the integrity of the subresources,
based on the provided checksum, is performed by the user agent, typically the web browser. SRI is
currently supported by all the major browsers (except Internet Explorer). If the integrity verification
of a subresource fails, it is not loaded.

It should be noted that integrity verification mechanisms have some limitations. In particular, the
fact that the checksums must be updated together with the target files is a major issue, especially
when the update process is manual. And failures to address this issue can create detrimental false
alarm situations. These issues are discussed in more details (for SRI) in a recent study [39].

4 AUTOMATING CHECKSUM VERIFICATION
One of the main usability issue in the current form of checksum-based integrity verification is that
the task of computing and verifying checksums needs to be done manually and visually by the
5https://www.w3.org/TR/SRI/. Last visited: Dec. 2019.

ACM Trans. Priv. Sec., Vol. 24, No. 1, Article 4. Publication date: August 2020.

https://www.w3.org/TR/SRI/

4:8 Meylan et al.

users. In addition, most Internet users are unaware of the utility and usage of checksums [1]. In
this section, we address these problems by proposing both amendments to the existing standards
as well as by technical solutions that we implemented.

4.1 Extending Subresource Integrity to Links
A direct solution for making checksum verifications automatic is to extend the subresource integrity
(SRI) feature [7], introduced by the W3C and described in Section 3, to HTML a elements (i.e., links)
that point to files to be downloaded.
Our proposal is to include an integrity attribute in the a elements, and optionally the meta

and iframe elements, as web developers sometimes rely on them to trigger automatic downloads.
Below, we give an example link that specifies in an integrity attribute the checksum of the file it
points to.

download

Upon a successful download of a file pointed to by a link that includes an integrity attribute, the
integrity of the downloaded file should be checked by the user agent (i.e., the web browser or an
extension) by comparing its (computed) checksum to the one specified in the integrity attribute.
A recent study by Chapuis et al. [39] shows that web developers have a strong interest in

extending SRI to downloads (i.e., a elements) as well as pictures, videos, etc. We made a proposal in
this direction and communicated it to W3C’s WebAppSec Working Group. Our proposal includes
other types of subresources, including images and videos. Note that such subresources have
specificities that must be taken care of (e.g., progressive load of images).

4.2 Checksum Verification: Browser Extension
As browsers do not currently handle SRI for links, we developed a Chrome extension to automatically
check the integrity of downloaded files.6 This extension should be considered as a proof of concept
and not as a final product.

Design and Implementation. Our extension supports three popular algorithms used to generate
checksums: the MD5, SHA-1 and SHA-2 hash functions.7 It is implemented in JS and it relies on
the md5.js library for computing MD5 digests8 and the asmcrypto.js library for computing SHA
digests.9 In total, the extension consists of ∼400 lines of JavaScript code (excluding the libraries); it
requires permission to access the browser’s download manager in order to initiate and monitor
downloads, as well as read-only access to the file system in order to compute the digest of the
downloaded file.

Because SRI for links is currently not supported, the extension automatically extracts checksums
directly from the text of HTML pages, thus requiring no changes to existing websites (such as VLC).
It operates as follows:
(1) For each visited webpage, it navigates the HTML DOM tree and extracts, by using regular ex-

pressions, hexadecimal strings that have the same format as checksums and the corresponding
hash function names (e.g., MD5).

(2) If checksums are detected (on the webpage or in the integrity attribute of the a element),
it intercepts click events triggered by hyperlinks. If a link points to a file with a sensitive
extension (e.g., dmg, exe) and/or multipurpose internet mail extension (MIME) type10 (e.g.,

6Ideally, such a verification should be performed by the web browser.
7We chose to support the MD5 and SHA-1 functions despite their known weaknesses because they are still used [1].
8https://github.com/blueimp/JavaScript-MD5
9https://github.com/asmcrypto/asmcrypto.js
10The MIME type is determined by issuing a HEAD request to the target.

ACM Trans. Priv. Sec., Vol. 24, No. 1, Article 4. Publication date: August 2020.

https://github.com/blueimp/JavaScript-MD5
https://github.com/asmcrypto/asmcrypto.js

A Study on the Use of Checksums for Integrity Verification of Web Downloads 4:9

Fig. 2. Screenshot of the extension on the Plex download page. The checksum of the downloaded file is
computed and successfully checked against that extracted from the webpage (highlighted). See Fig. 12 (p. 19)
for the French version of the messages used in the experiment.

application/x-apple-diskimage, application/x-msdownload), the download is followed by the
verification of the checksum, essentially a comparison between the checksum that is detected
and the one computed from the downloaded file.

(3) If multiple checksums are extracted from thewebpage, the verification is considered successful
as long as the computed checksum matches any one of them.11 The webpage is greyed out
and a pop-up message is displayed to the user, as illustrated in Figure 2. Additionally, if the
checksum originates from the text of the webpage, the matching text with the checksum is
revealed (if originally hidden) and highlighted.

The extension displays a general message to the user and a status indicator (e.g., “downloading”,
“computing checksum”) with an animation. Additionally, it can show four different messages
according to the result of the verification (Figure 3), depending on the origin of the checksum
(webpage text or integrity attribute) and on the outcome of the verification (success or failure). In
the case of failure, users are offered the option to delete the possibly corrupted downloaded file
(through a link). Clearly, there are multiple ways to communicate the result of the verification to
the user, and the UI elements have a significant effect on the usability of our extension [16]. For
the initial proof of concept, we experimented with the four messages shown in Figure 3. A careful
consideration of alternatives that incorporate user feedback should be conducted before a public
release of such an extension. We leave the careful design of the extension UI for future work.
An archive containing the source code of the extension used in the experiment can be down-

loaded at the following address: https://checksum-lab.github.io/chrome_extension.zip (SHA-256:
237ac0154e5d951d22f54c97300d3de81a88333c29ec66334c061edb44f2d368).12 A test webpage

11Note that this reduces only slightly the security of the verification procedure as download pages usually contains only a
few checksums (8 at most in the websites we surveyed in [1], i.e., for Android Studio). As part of future work, we intend to
match automatically checksums to download links by analyzing the DOM of the webpages.
12An updated version is available at: https://github.com/isplab-unil/download-checksum; alternatively, it can
be installed from the Chrome Web Store: https://chrome.google.com/webstore/detail/automated-checksum-verifi/
kabghagbpkdbojdeklmcbfamenmpilga

ACM Trans. Priv. Sec., Vol. 24, No. 1, Article 4. Publication date: August 2020.

https://checksum-lab.github.io/chrome_extension.zip
https://github.com/isplab-unil/download-checksum
https://chrome.google.com/webstore/detail/automated-checksum-verifi/kabghagbpkdbojdeklmcbfamenmpilga
https://chrome.google.com/webstore/detail/automated-checksum-verifi/kabghagbpkdbojdeklmcbfamenmpilga

4:10 Meylan et al.

Fig. 3. Messages displayed by the browser extension: left (integrity attribute) / right (text of the webpage),
top (success) / bottom (failure). See Fig. 12 (p. 19) for the French version of the messages used in the experiment.

can also be found at the following address: https://checksum-lab.github.io/. It contains test down-
load links with and without (correct/incorrect) integrity attributes and links to the download
pages (that include checksums) of popular software (e.g., Android Studio, Plex, VLC) on which the
extension can be successfully tested. Alternatively, a demo video can be downloaded or watched at
the following address: https://checksum-lab.github.io/demo.mp4.

VLC (46MB)

OpenOffice (172MB)

Android Studio (889MB)

Ubuntu (1624MB)

File size [MB]

0

5

10

15

C
om

pu
ta

tio
n

tim
e

[s
]

MD5
SHA-1
SHA-2 (256 bits)

Fig. 4. Performance of the browser extension in terms of the checksum computation time for different hash
functions and file sizes. The graph shows the mean and the standard deviation for 20 independent runs.

Performance Evaluation. In order to assess the delays induced by the verification of the checksums,
we measured the computation times for different hash functions (namely MD5, SHA-1 and SHA-2
with 256 bits), based on the implementation of the libraries used in the Chrome extension, and for
different file sizes ranging from 45MB (corresponding to VLC’s app file) to 1.6GB (corresponding
to Ubuntu’s ISO image file). For each hash function and file size, we performed 20 independent
runs and we measured the mean and the standard deviation of the computation time. The results
were obtained in a standard setting (MacBook Pro 2014, SSD, 16GB of RAM, Core i7@2.2GHz,
macOS 10.12.6, Chrome v.65 64-bit). They are shown in Figure 4. It can be observed that the
computation time is reasonable. It takes less than one second to verify the checksum for small
files (<50MB), and only about ten seconds for large files (∼1GB). Note that we also compared the
computation times for the extension against those for native programs (e.g., shasum) and find them
to be comparable. Unsurprisingly, we find that the computation time grows linearly with the file
size. The corresponding rates, obtained through a linear regression, are 121MB/s (MD5), 120MB/s
(SHA-1), and 115MB/s (SHA-2 with 256bits). The verification throughput is much higher than
those of most broadband connections; the verification time is therefore negligible compared to the
download time for most users. To improve the performance, one can combine any of the following
techniques: optimizing the library, optimizing the browser’s JavaScript engine, using native libraries
(e.g., SubtleCrypto), computing the checksum as the file is downloaded (i.e., pipelining).

ACM Trans. Priv. Sec., Vol. 24, No. 1, Article 4. Publication date: August 2020.

https://checksum-lab.github.io/
https://checksum-lab.github.io/demo.mp4

A Study on the Use of Checksums for Integrity Verification of Web Downloads 4:11

Fig. 5. Screenshot of the window arrangement on the computer used for the experiment (macOS). The left
half of the screen is occupied by the Chrome browser in which multiple tabs have been opened: the download
pages of the first four programs, the extension tab to activate the extension, the download pages of the next
two programs, and the questionnaire website for the exit survey. The right half of the screen is occupied by
the terminal application where the participants must type the command lines to compute the checksums
of the downloaded programs (bottom) and the “Downloads” folder (top) were the programs downloaded
from the browser are placed; the participants had to click on the icons of the downloaded programs (in that
window) to execute them.

Shortcomings and Perspectives. There are several limitations and missing features that we intend
to address in the future. First, the UI and the textual messages of the browser extension should be
carefully designed by taking into account user feedback (see Section 5.4) and best practices for the
design of security warnings (see for instance [14–18, 21, 23, 40–42]). Second, the extension does
not handle the case of concurrent downloads from the same tab (e.g., multiple downloads from the
same webpage). Third, the extension works only when the checksum and the direct link to the file
are on the same page; for instance, the case where a download link redirects to a page with an
automatic download based on a meta or iframe element is not supported. Similarly, it does not
support the case where the checksums are in a separate file (e.g., .md5, .shasum, .sig) linked on the
download page.

5 CONTROLLED USER EXPERIMENT
To better understand how Internet users handle file integrity verification, we conduct an in-situ
experiment with 40 participants and an eye-tracking system. More specifically, we aim at answering
the following research questions:

• (RQ1) Do users thoroughly verify checksums and how do they proceed?

ACM Trans. Priv. Sec., Vol. 24, No. 1, Article 4. Publication date: August 2020.

4:12 Meylan et al.

• (RQ2) Can users be fooled by replacing characters in the middle of the checksum (i.e., partial
preimage attack)?

• (RQ3) Does automating the checksum verification improve general usability metrics?

Eye-tracking has been used extensively in the last decade to study usability of new services,
programs or mobile apps, as it enables the collection of accurate objective measurements of where
the user looks on the screen without obtruding or disturbing their action [43]. The two metrics we
extract from this experiment are the total number of fixations and the total dwell time. Fixations
are indicative of the amount of processing being applied to objects at the point-of-regard [44]. A
longer dwell time indicates difficulty in extracting information, or it means that the object is more
engaging in some way [45]. Our hypotheses were that some participants would not thoroughly
check the checksums (fixating only parts of them) and that participants who checked thoroughly
the checksums would have to produce more fixations (and spend more time fixating) in the part of
the user interface where these sequences were displayed.
The experiment was split in two phases, as detailed in Section 5.3. During the first phase, we

asked participants to verify manually the checksums of four downloaded apps (this was addressing
RQ1 and RQ2). In the second part of the experiment, we activated a browser extension that verifies
the integrity of the downloaded files based on their checksums (this was addressing RQ3). We
chose not to randomize the presentation order of these two parts as we considered that seeing the
messages of the browser extension could have revealed the main topic of the experiment. With
hindsight, we realize that this design also has drawbacks that we report below in Section 5.4.4. The
experiment was approved by our institution’s ethics committee.

5.1 Participants
We recruited the participants of our experiment from a student population through flyers displayed
on two university campuses (i.e., UNIL and EPFL in Lausanne, Switzerland). To sign up for the
experiment, potential subjects had to fill an online screening questionnaire first. In this questionnaire,
they were asked about their basic demographic information (age and gender), major field of study,
knowledge of checksums (i.e., “Do you know what the elements circled in red are used for and
how?13 If yes, please describe it briefly in the text box below.”), technology savviness (i.e., “Check
the technical terms related to computers that you understand well: ad-blocker, digest, firewall, VPN,
etc.). Finally, we asked which was the operating system of their main computer.

We selected a total of 40 subjects (out of the 120 who completed the screener) and invited them
to participate in the experiment. The number of participant was chosen so that it provides sufficient
power to the statistical tests and keeps the total duration of the experimentation reasonable (we had
only one eye-tracker). The sample was selected to maximize diversity. About half of the participants
were macOS users (i.e., 21/40, that is 53%) and half Windows users (the actual breakdown in
terms of operating systems (OS) among the participants who filled the screener was 56% macOS,
41% Windows, 3% Linux). The subject pool included 40% of female subjects and it was diverse
in terms of major fields of studies, with more than 15 different majors represented. The average
age of the subjects was 22.5±2.9. Out of the 40 subjects, 12 (30%) knew about checksums, 33 (83%)
downloaded programs from developers websites and 20 (50%) from app stores, and 25 (63%) had an
antivirus installed on their computers. The experiment took approximately 50 minutes per person
to complete and the participants were compensated with CHF 20 (∼USD 20). The whole experiment
was conducted in French (i.e., the local language in Lausanne).

13The screenshot depicted VLC’s download page with checksums circled.

ACM Trans. Priv. Sec., Vol. 24, No. 1, Article 4. Publication date: August 2020.

A Study on the Use of Checksums for Integrity Verification of Web Downloads 4:13

(a) Thorough verification of a cor-
rect checksum

(b) Succeeded verification of an
incorrect checksum (i.e., mis-
match detected)

(c) Failed verification of an in-
correct checksum (i.e., mis-
match not detected)

Fig. 6. Sample subject gaze heat maps captured by the eye-tracking system on macOS.

5.2 Apparatus
The experiment took place in a UX-lab, a small room with a desktop computer. The computer was
equipped with an eye-tracking system (maker Tobii, model X2-6014) which was sampling gaze at
60Hz. Two cameras and a few microphones were also placed in the room to record the experiment.

Depending on the OS the participant was most familiar with (macOS or Windows), we switched
the computer that was used by the participants during the course of the experiment. Aside from
the OS, the employed apps and the layout of the windows were the same on the two different
OSes. Three windows were placed and arranged on the screen: the web browser (Chrome) that
occupied the left half of the screen, the “Downloads” folder (Windows explorer/macOS finder) that
occupied the top right quadrant, and the terminal that occupied the bottom right quadrant (see
Figure 5). Participants were asked to not change the position of the three windows, and scrolling
was disabled in the browser in order to reduce shifts in the areas of interest (AOIs) of the screen
that were displaying the checksums.

All necessary pages were pre-loaded in the browser window in different tabs. We tampered with
the checksum on the third webpage (i.e., Transmission) for the first part of the study and the second
webpage (i.e., Audacity) for the second part of the study. All the other checksums were correct.
Based on our running hypothesis that users check only the first and last digits of the checksum,
we changed the 44 digits (out of 64) in the middle of the checksums; this means that only the first
and last 10 digits remained unchanged. This corresponds to a 80-bit attack (i.e., 20 hexadecimal
digits). We assumed, as in [6], that a realistic adversary can forge, through brute-force, a corrupted
program in such a way that the first and last few digits of its checksum match those of the original
program’s checksum. In [6], the authors estimate the cost of such an attack to be between USD 610k
and USD 16B. Note that recent advances15 for computing hashes (e.g, GPU-based) and further
optimizations (e.g., exploiting the visual similarity between digits) could be used to further decrease
the cost of the attack, not to mention the decrease in computation costs. Note also that, as our
results show, keeping the last digits unchanged is in fact not very important as most users focus
their attention on the first digits (see Section 5.4); therefore, an inexpensive 40-bit attack could
probably achieve the same results.

5.3 Procedure
First and foremost, we informed the participants that they would be recorded during the course of
the experiment (and about our data management plan, including data anonymization and retention)
and we asked them to sign, if they agreed, an informed consent agreement. We told the participants

14https://www.tobiipro.com/product-listing/tobii-pro-x2-60/
15The work in [6] was conducted more than four years ago.

ACM Trans. Priv. Sec., Vol. 24, No. 1, Article 4. Publication date: August 2020.

https://www.tobiipro.com/product-listing/tobii-pro-x2-60/

4:14 Meylan et al.

that we were conducting a study on the way people download applications on their computers
and that they had to download several applications on the lab computer. We asked the participants
to behave as if they were using their own computer and we told them to not hesitate to call the
experimenter in case of doubts or problems. We also explained that the experimenter had nothing
to do with the design and implementation of the extension, therefore, the participants could freely
express negative opinions without the risk of affecting the experimenter.
Next, we asked participants several preliminary questions, mainly to confirm some of the

information they provided in the screener: the OS of their computer, whether they had an antivirus
installed and whether they downloaded apps from the Internet from places other than official app
stores. Then, we asked the participants to sit at the computer, and a 13-point calibration procedure for
the eye-tracking system was completed. Finally, the participants were given a checklist containing
the steps to follow during the session.

First Phase. We asked the participants to download from the official website and execute/install
four different programs (in this specific order): VLC, Handbrake, Transmission, and Android Studio.
Specifically, for each application, the participants were asked to

(1) Download the application. For the sake of simplicity, the download webpages were already
opened in individual tabs of the web browser.

(2) Compute the checksum of the downloaded program and compare it to that specified on the
webpage. The participants were provided with the exact command to type in the terminal,
e.g., clear ; shasum -a 256 Handbrake-1.1.0.dmg for macOS.16 All the checksums were
SHA-2 with 256 bits.

(3) Run the program and report some information on the instruction leaflet: program version and
copyright years found in the “About” box (macOS) or digital certificate issuer (Windows). The
purpose of this last step was to avoid calling too much attention to the checksum verification
as being the core of the experiment.

Second Phase. We asked the participants to activate the extension (by clicking on a button in the
fifth tab of the browser), and to download and run/install two additional applications i.e., RealVNC
and Audacity, in this order. We asked the participants to perform the same steps as in the first
phase, except from the manual checksum verification that was automated by our browser extension.
The first application’s checksum was correct, resulting in the display of a confirmation message by
the browser extension, whereas the second one was incorrect, hence resulting in the display of a
warning message (see at the top and bottom right of Figure 3 resp.). The terminology used in the
messages was inspired by the instructions found on the download pages of popular programs (e.g.,
Ubuntu).

Finally, we asked the participants to fill a short online questionnaire to get feedback about their
perception of the manual verification of checksums and of the browser extension, satisfaction with
the extension and net promoter score17.

5.4 Results
We describe and analyze the results related to the manual checksum verification (first phase) and
report on the usability and effectiveness of the browser extension (second phase).

16The clear command is used to ensure that the checksum is always displayed at the same location on the screen, for
eye-tracking purposes.
17See https://en.wikipedia.org/wiki/Net_Promoter, last accessed: Dec. 2019.

ACM Trans. Priv. Sec., Vol. 24, No. 1, Article 4. Publication date: August 2020.

https://en.wikipedia.org/wiki/Net_Promoter

A Study on the Use of Checksums for Integrity Verification of Web Downloads 4:15

In order to study the gaze behavior, in our analysis, we surrounded the parts of the UI that
displayed the checksums, and we labelled each area of interest (AOI). Unfortunately, we had to
remove eye-tracking recording for one participant due to corrupted data.

5.4.1 RQ1. From a qualitative analysis of the fixation heatmaps of the participants looking at the
AOIs that contained the checksums, we could observe three distinct behaviors: (a) some participants
produced extensive fixations throughout the sequence of characters (i.e., the checksum) covering
most/all of the sequence; (b) other participants produced less fixations but still “sampled” the
sequence at several points from beginning to end; (c) finally some other participants produced
fewer fixations in the AOIs, typically pointing to the beginning and the end of the sequence.
Examples of these three behaviors can be seen in Figure 6. While the first two behaviors typically
led to identifying the incorrect checksum, the third was typically associated with not identifying
the incorrect checksums. This was confirmed by our quantitative analysis presented below.

(a)

(b)

(c)

Fig. 7. Areas of interest (AOIs) used for the checksums (a) displayed in the terminal and (b)/(c) on the webpage.
For Transmission (c), the mismatch spans from the end of sub-AOI 1 to the beginning of AOI 4 (dashed box).

To understand whether all the digits of the checksum were treated equally by the participants, we
further subdivided the area where the checksum is displayed in four sub-AOIs, both in the terminal
and in the webpage (see Figure 7), and measured differences of the total number of fixations falling
in each of these areas. As the assumptions for parametric inferential statistics were violated, we
used nonparametric statistics for the subsequent quantitative analysis.18
We conducted a Friedman test of differences among repeated measures to compare the total

number of fixations that fell in each of the four sub-AOIs of the checksum displayed in the terminal.
There was a significant difference in the scores: Term 1 - M=25.15, SD= 13.11, Term 2 - M=21.92,
SD= 13.96, Term 3 - M=13.92, SD= 9.55, and Term 4 - M=10.58, SD= 6.99; 𝜒2(3) = 77.32, 𝑝 < 0.001.
Six Wilcoxon signed rank tests with continuity correction were conducted to make post-hoc
comparisons between AOIs. All the tests indicated that there was a significant difference between
the number of fixations falling in each terminal AOI. We include the detailed results of the tests and
18Concerning the total number of fixations, the Shapiro-Wilk normality tests were close to rejection: Term 1 - (𝑊 = .95, 𝑝 =

0.085), Term 2 - (𝑊 = .94, 𝑝 = 0.027), Term 3 - (𝑊 = .94, 𝑝 = 0.037), Term 4 - (𝑊 = .92, 𝑝 = 0.008) and the assumption of
homoscedasticity was violated when using the Modified Levene’s Test (𝐹 = 6.23, 𝑝 < 0.001). The conclusion was similar for
the total dwell time.

ACM Trans. Priv. Sec., Vol. 24, No. 1, Article 4. Publication date: August 2020.

4:16 Meylan et al.

AOIs
(Term.)

1 2 3 4

1 − 445∗∗ 756∗∗∗ 773∗∗∗

2 − − 709∗∗∗ 688∗∗∗

3 − − − 518∗∗∗

4 − − − −
∗𝑝 < 0.05, ∗∗𝑝 < 0.01, ∗∗∗𝑝 < 0.001

Table 1. Wilcoxon signed rank tests of the number of fixations within the four AOIs covering the checksums
in the terminal. Due to ex aequos in the data, the 𝑝-value is an approximation.

the boxplot of the distribution of fixations for each terminal AOI, in Figure 8 and Table 1. These
results suggest that the attention given to the digits of the checksum is highest at the beginning
and decreases as we progress in the sequence. This means that a partial pre-image attack should
focus on keeping the first digits of the checksum unchanged.

5.4.2 RQ2. We observed that 15 (38%) of the participants did not detect the mismatch (for Trans-
mission) between the checksum displayed on the download webpage and the checksum computed
from the downloaded file (displayed in the terminal). This constitutes a substantial proportion of
our subject pool. This number could be higher in real life as the subjects are likely to be more
careful in a controlled environment compared to a situation where they are eager to run the
program they just downloaded. Furthermore, we explicitly asked the subjects (in the instructions)
to verify if the checksums on the webpage and in the terminal were identical. We did not find a
significant difference in the detection rate for participants who had prior checksum knowledge
(𝑝 = 1, Fisher’s exact test). We hypothesize that participants with prior knowledge understand
better the importance and functioning of checksums but, at the same time, they might be more
sloppy in their verification as they know that an accidental modification would very likely change
the first digits of the checksum. The same result was observed for the previous results on RQ1.

Term 1 Term 2 Term 3 Term 4
Area of Interest

0

20

40

60

N
um

be
r o

f f
ix

at
io

ns

All
Detected
Did not detect

(a) Number of fixation in each sub-AOI of the terminal.

Term 1 Term 2 Term 3 Term 4
Area of Interest

0

20

40

60

D
w

el
l t

im
e

[s
]

All
Detected
Did not detect

(b) Dwell time in each sub-AOI of the terminal.

Fig. 8. Boxplot-representations of the distributions of the participants’ (a) number of fixations and (b) total
dwell time across the four sub-AOIs covering the checksums of the terminal in the four verification tasks. The
distributions are displayed across all the participants (left), across participants who detected the mismatch
and stopped (middle), and across participants who did not detect the mismatch and continued (right).

ACM Trans. Priv. Sec., Vol. 24, No. 1, Article 4. Publication date: August 2020.

A Study on the Use of Checksums for Integrity Verification of Web Downloads 4:17

↩→ Term 1 Term 2 Term 3 Term 4 Web 1 Web 2 Web 3 Web 4
Term 1 0 1.93 0.13 0.17 2.52 0.48 0.07 0.03
Term 2 1.92 0 1.47 0.19 0.59 1.6 0.35 0.01
Term 3 0.28 0.81 0 1.09 0.15 0.41 1.69 0.47
Term 4 0.43 0.17 0.59 0 0.05 0.08 0.35 1.32
Web 1 1.84 0.68 0.07 0.04 0 1.17 0.03 0.11
Web 2 0.33 1.75 0.35 0.03 0.47 0 1.21 0.15
Web 3 0 0.61 1.57 0.16 0.05 0.49 0 1.24
Web 4 0.09 0.13 0.76 1.47 0.07 0.05 0.48 0

(a) Correct / Detected

↩→ Term 1 Term 2 Term 3 Term 4 Web 1 Web 2 Web 3 Web 4
Term 1 0 1.12 0.31 0.12 0.74 0.24 0.07 0.1
Term 2 1.29 0 0.4 0.14 0.12 0.07 0.02 0.02
Term 3 0.21 0.36 0 0.5 0.02 0.02 0.02 0.1
Term 4 0.14 0.19 0.17 0 0.05 0.05 0.19 0.21
Web 1 0.55 0.19 0.05 0.02 0 0.14 0.1 0.14
Web 2 0.07 0.1 0.02 0.02 0.17 0 0.17 0.07
Web 3 0.02 0.05 0.07 0.05 0.05 0.17 0 0.33
Web 4 0 0.12 0.19 0.33 0.05 0.02 0.17 0

(b) Correct / Did not detect

↩→ Term 1 Term 2 Term 3 Term 4 Web 1 Web 2 Web 3 Web 4
Term 1 0 4.2 0.6 0.72 6.24 0.88 0.08 0.2
Term 2 5.92 0 1.32 0.52 0.88 0.4 0.12 0.04
Term 3 0.52 0.92 0 1.28 0.16 0.08 0.16 0.28
Term 4 0.96 0.52 0.6 0 0.2 0.04 0.24 1
Web 1 4.36 2 0.28 0.16 0 2.68 0.44 0.6
Web 2 0.64 0.92 0.16 0 2.04 0 0.4 0.36
Web 3 0.08 0.12 0.12 0.04 0.52 0.36 0 0.64
Web 4 0.28 0.36 0.32 0.88 0.6 0.12 0.56 0

(c) Incorrect / Detected

↩→ Term 1 Term 2 Term 3 Term 4 Web 1 Web 2 Web 3 Web 4
Term 1 0 0.64 0.07 0.36 0.86 0 0.07 0
Term 2 0.86 0 0.36 0.14 0 0.07 0.07 0
Term 3 0.07 0.29 0 0.36 0.07 0.07 0 0
Term 4 0.07 0 0 0 0 0 0.29 0.64
Web 1 0.5 0.14 0.21 0 0 0.21 0.07 0.21
Web 2 0.07 0.07 0.07 0 0.21 0 0.07 0
Web 3 0 0.07 0 0 0.07 0.07 0 0.21
Web 4 0.07 0.14 0.14 0.21 0.14 0.14 0 0

(d) Incorrect / Did not detect

Fig. 9. Transition matrices representing the average number of transitions from one AOI to another. The
row represents the origin of the transition and the column the destination. The names of the AOIs are those
from Fig. 7. The top matrices correspond to the tasks with a correct checksum (i.e., VLC, Handbrake, Android
Studio) and the bottom matrices correspond to those with an incorrect checksum (i.e., Transmission). The left
matrices correspond to the participants who detected the mismatch for Transmission and the right matrices
correspond to those who did not. The darker a cell, the higher the number of transitions.

To study more quantitatively if some behavioral differences existed between those who detected
the mismatch and those who did not, we operated a post-hoc split of the participants. We focused
our analysis on the terminal window. Figure 8 shows the distribution of the number of fixations
and dwell time, for each of the four sub-AOIs in the terminal, across the participants who detected
the mismatch and those who did not. A Wilcoxon rank sum test was conducted to compare the
total number of fixations in the AOIs for the two groups of participants. The values of the task
with the incorrect checksum were not considered in order to compare the usual behavior. There
was a significant difference in the number of fixations for participants who detected the corrupted
checksum (M=12.47 fixations, SD=5.01) and those who did not (M=3.88 fixations, SD=2.09); W=338.5,
𝑝 < 0.001. Furthermore, the same test was conducted to compare total dwell time in the AOIs for
the two groups. There was a significant difference in the amount of time spent in the checksum
AOIs for participants who detected the corrupted checksum (M=15.63 seconds, SD=9.50) and those
who did not (M=3.97 seconds, SD=2.60); W=333, 𝑝 < 0.001.

These results suggest that participants who detected the corrupted checksum fixated the check-
sums significantly more frequently and spent significantly more time than those who did not. The
observed ratios between the two behaviors were approximately 4:1. This analysis was also extended
to tasks 1, 2 and 4 for the two groups of participants. We observed the same difference as for Task
3; this reveals that those who were thorough were consistently so, during the entire experiment.
To better understand how users conduct the checksum verification process, we extracted and

analyzed the gaze movements between the sub-AOIs of both the checksum displayed in the terminal
and the checksum displayed in the webpage; as the verification process consists in making sure
that these two alphanumeric strings are identical, the participant had to look alternatively at the
checksum in the terminal and at the checksum in the webpage. This is due to the fact that people

ACM Trans. Priv. Sec., Vol. 24, No. 1, Article 4. Publication date: August 2020.

4:18 Meylan et al.

can only hold so much information in their working memory. To perform this analysis, we relied
on the same sub-AOIs as before (see Figure 7) and computed the number of transitions, with respect
to participants fixations. We define as a transition one or multiple fixations in one of the AOIs
followed by one or multiple fixations in a different AOI. All fixations outside of the AOIs were
ignored: If a participant fixates in Term 1, then somewhere else on the screen, and finally in Web 1,
this counts as a transition from Term 1 to Web 1.

0 10 20 30
Number of back-and-forth

0

20

40

60

80

100

Ta
sk

s [
%

]

(a) Correct checksum

0 10 20 30
Number of back-and-forth

0

20

40

60

80

100

Detected
Did not detect

(b) Incorrect checksum.

Fig. 10. Cumulative distribution functions of the number of back-and-forth transitions between the terminal
and the webpage.

We look at the transitions between the different AOIs. Figure 9 depicts the matrices of transition
between AOIs for the tasks with a correct/incorrect checksums (top/bottom) and for the participants
who detected/did not detect (left/right) the mismatch for Transmission. A first general finding is
that participants start by looking at a chunk of the checksum in one window (terminal or webpage)
and then check by looking at the corresponding chunk in the other window (diagonal in the
top-right and bottom-left quadrants of the transition matrices, e.g., “Term 𝑖 ↔ Web 𝑖” transitions).
Note, however, that some participants look at multiple chunks of the checksum successively in the
same window (sub-diagonal in the top-left and bottom-right quadrants, e.g., “Term 𝑖 → Term 𝑖 + 1”
transitions). It can also be observed that the participants who did not detect the mismatch stopped
the verification process in the first parts of the checksums; this confirms our previous analysis. In
the case where the checksum is incorrect (right sub-figures, i.e., Transmission), the behavior of the
participants who did not detect the mismatch does not change substantially; there is no substantial
difference between Figure 9b and Figure 9d. For the participants who did detect the mismatch,
however, the difference is substantial: Indeed the participants’ fixations gravitate around the first
two AOIs (the mismatch started at the end of AOI 1) with many transitions between these two.

We further look at the distribution of the number of back-and-forth transitions (i.e., transitions
from one window to another and back to the original window) between the AOIs in the terminal and
those in the webpage across participants, as depicted in Figure 10 (cumulative distribution function).
This metric reflects the cognitive load of the participants. It can be observed that the number of
back-and-forth transitions is substantial, with a median number of around 10 and a maximum
of 26 for the participants who thoroughly checked the checksums (i.e., those who detected the
mismatch for Transmission); this number is substantially lower for those who did not. Therefore we
can observe that identifying the mistake required more effort (and time). While participants who
successfully identified the mismatch were thorough in checking the entire sequence of characters
and numbers, those who did not identify the mismatch stopped right after the first few characters,
perhaps thinking that if the beginning of the sequence matched so must the rest of it.

ACM Trans. Priv. Sec., Vol. 24, No. 1, Article 4. Publication date: August 2020.

A Study on the Use of Checksums for Integrity Verification of Web Downloads 4:19

5.4.3 RQ3. We now report the results of our user experiment related to the browser extension
carried out in the second phase. As explained in Section 5, in order to study user reaction to the
messages displayed by the extension and to collect user feedback, in the second phase of our
user experiment, we asked the subjects to activate the extension and to download two programs
(RealVNC and Audacity) from the corresponding official websites. The checksum of the second
download (Audacity) was incorrect.

During the experiment, 40% of the participants stopped when shown the warning message for the
(corrupted) Audacity download. For those who did not, the reason they reported most frequently
(in the exit survey) was that they tend to ignore popups shown on webpage systematically because
they are too frequent and often irrelevant or even scams. Among the participants who did stop,
50% removed the download file: 37.5% of them clicked on the dedicated “delete” link embedded in
the warning message and the remaining 62.5% manually removed the file.

0 10 20 30
Dwell time [s]

0

20

40

60

80

100

Pa
rti

ci
pa

nt
s [

%
]

Correct
Incorrect

Fig. 11. Cumulative distribution function of the participants’ total dwell time on the popup window of the
browser extension.

In order to further analyze the participants’ interaction with the popup window of the browser
extension, we measured the participants’ total dwell time on the popup; the cumulative distribution
function across the participants is depicted in Figure 11. As expected, the median dwell time is
higher for the incorrect checksum than for the correct ones. This could be explained by the fact
that the participants tend to devote more time/attention to warnings (identified in many system-
conventions with the orange warning icon). Surprisingly, in some cases the dwell time is lower for
the warning (i.e., for the incorrect checksum); this could be explained by an habituation effect, as
the incorrect checksum was always shown after the correct one in our experiment (as described in
Section 5.3).

(a) Correct checksum (b) Incorrect checksum

Fig. 12. Screenshot of the extension popup when the verification succeeds (i.e., correct checksum; top) and
fails (i.e., incorrect checksum; bottom). The experiment was conducted in French; an English version is available
in Fig. 3.

ACM Trans. Priv. Sec., Vol. 24, No. 1, Article 4. Publication date: August 2020.

4:20 Meylan et al.

We further defined sub-AOIs in the extension popup window (see Figure 12) and we measured
the breakdown of the dwell time across them. The boxplot representations of the distributions of
dwell time are depicted in Figure 13. It is interesting to notice that participants did spend more
time on the status text, particularly when the error message was displayed. This indicates that
the design was effective in capturing the participants’ attention on the component that offered
informative content to understand the status and behavior of the plugin.

Popup Main text Status text Title
Area of Interest

0

10

20

30

To
ta

l d
w

el
l t

im
e

[s
] Valid

Invalid

Fig. 13. Boxplot representation of the distribution of dwell time on the different AOIs on the extension popup.

In the exit survey, the participants reported an average satisfaction score of 5.2±1.4 (on a scale
from 1 to 7).19 Furthermore, the participants reported an average desirability score of 4.6±1.9
(“Should the extension be available for download, how likely would you be to use it?”), with 55% of
the participants answering positively, and an average net promoter score of 4.5±1.9 (“How likely
would you be to recommend it to a friend or relative?”), with 55% of the participants answering
positively. In these questions, the comparison was implicit to the status-quo offered by the command-
line interface that the participants tested in the first phase.
Another observation from the user experiment was that 26/40 participants (65%) could not

explain the goal of integrity verification in the exit questionnaire (before the debriefing). This
reveals the inability of non-technical users to grasp the concept behind checksum-based integrity
verification. This was confirmed by the following remark made by one participant: “Sur mon
ordinateur personnel, j’aurai quand meme téléchargé le fichier car l’antivirus de l’ordinateur ne
m’a prévenu d’aucune menace et le site web à partir du quel j’ai téléchargé le fichier me semblait
fiable (On my personal computer, I would have downloaded the file anyway as the antivirus on the
computer did not notify me about any threat and the website from which I downloaded the file
seemed trustworthy).”. This remark also highlights a clear misunderstanding regarding the location
of a website’s subresources.
Finally, the participants gave us feedback on the messages displayed by the browser extension.

The main comments were the following: The terminology used in the message was too technical or
unclear (7 participants): “Plutôt sobre je trouve bien mais pour un neophyte, il n’est pas très clair par
rapport à son rôle. (It is rather sober I think but for a newbie it is not clear enough in relation to its
role)”; the popup did not sufficiently catch their attention (4 participants)–they suggested using
larger icons and using colors for the text messages themselves or even to remove the icons–: “Sans
le petit logo vert, qui fait penser à celui d’un antivirus, c’est personnellement le genre de message auquel
je fais très rarement attention. (The little green logo, which makes me think about an antivirus, should
be removed as it is the kind of message that I would rarely pay attention to.)”; the design of the skip
button allowed participants to easily skip it (2 participants): “Pour éviter que le message ne soit fermé
tout de suite, il faudrait peut-être bloquer le reste de la navigation tant que le message n’est pas fermé.

19For all the self-reported scores, we used a 7-level Likert scale.

ACM Trans. Priv. Sec., Vol. 24, No. 1, Article 4. Publication date: August 2020.

A Study on the Use of Checksums for Integrity Verification of Web Downloads 4:21

Ou le laisser ouvert obligatoirement pendant quelques secondes. (To prevent the user from immediately
dismissing the message the message, it would be necessary to block the user from pursuing navigation
until the message is closed. Or to force the message to remain open for a few seconds).”. Interestingly,
during the informal feedback with the experimenter, several participants reported that they are,
in general, annoyed by popups displayed within webpages and tend to ignore them.20Also, they
mentioned that a warning originating directly from the browser in a standalone window would
have been more effective. Finally, one participant reported that “[L’avertissement] est clair et bien
expliqué, peut-être qu’un message plus ‘effrayant’ inciterait plus l’utilisateur à supprimer le fichier
([The warning] is clear and well explained, maybe a more ‘frightening’ message would push the
user more to delete the file)”.

During the experiment, we also received positive feedback on the extension. Several participants
commented positively that the design of the message and the terms used were clear: “Le message
est assez clair et explique bien pourquoi le fichier devrait être supprimé (The message is rather clear
and it explains well why the file has to be deleted)”, “Ce message apparaît de manière assez claire
dans la page, donc cela permet à l’utilisateur d’être au courant sur ce qu’il télécharge. (This message
appears in a clear way on the page. This allows the user to be aware of what she is downloading.)”.
Interestingly, one participant stated: “[L’avertissement] est également assez clair, j’y aurais fait
attention hors du cadre de l’expérience. ([The warning] is rather clear, I would have paid attention
to it outside of the context of the experiment)”. This suggests that the browser extension would be
useful in practice. The study helped identify several areas for improvement of the design, namely
around the behavior of the extension and the messages displayed to encourage the users to delete
the downloaded file in case of mismatch. We took some the aforementioned comments into account
and refined the browser extension for the follow-up experiment described in Section 6.

5.4.4 Limitations. Like any lab study, the experiment suffered from low ecological validity. Also,
the prescriptiveness of the sequence of tasks that we gave to participants reduced the ability to
observe participants’ spontaneous behavior when downloading files. Furthermore, we might have
introduced a learning bias by choosing not to randomize the presentation of the first and the second
part of the study, and the correct vs. incorrect checksums within each part. Finally, the participants
of the lab study were all university students and many were technically literate as reported in
Sec. 5.1. Hence, we might expect a smaller share of users to understand and use checksums in the
general population than the share identified in the presented results.

5.4.5 Data availability. The eye-tracking data is available online.21 The dataset is a 40GB Tobii Pro
Studio (version 3.4.8) archive in the .nas format. The archive includes all the screen recordings; the
sound and the webcam streams are not included for privacy reasons. The archive is shipped with a
spreadsheet that contains the anonymized responses to the screener and exit questionnaires and
the notes taken by the experimenter. The IDs in the spreadsheet corresponds to the participant
number and recording number in the Tobii dataset.

6 USER EXPERIMENT IN THEWILD
To complement the insights of the in-situ experiment with data from a real-world deployment and
therefore to increase the ecological validity of our study, we conducted a second user experiment.
The goals of this experiment were:

20Showing fake (security) warnings in webpages to push users to download and install malicious programs is a common
practice, e.g, fake antivirus.
21https://drive.switch.ch/index.php/s/hC4ayTNXqmPZptS

ACM Trans. Priv. Sec., Vol. 24, No. 1, Article 4. Publication date: August 2020.

https://drive.switch.ch/index.php/s/hC4ayTNXqmPZptS

4:22 Meylan et al.

• To estimate the number and types (e.g., Microsoft Office or PDF document, image, binary
executable) of files Internet users usually download on the Web.

• To quantify the number of websites that regular Internet users usually visit, which offer
checksum-based integrity verification for the downloads.

• To collect data on how people would normally react to checksum verification in the wild.
• To observe users’ responses to the browser extension that we presented in the lab study.

Therefore, we posed the following research questions:
• (RQ4) How often do users download files from the Web and what types of files do they download?
• (RQ5) What is the prevalence and the current practices of checksums included in download
webpages?

• (RQ6)What do Internet users most frequently do when they encounter a visible checksum?
• (RQ7) Would users feel more secure if they could use a system that automates parts of the
verification process?

To answer these questions, we conducted a medium-scale analysis of web users browsing and
download habits and of the associated security-related behaviors.

6.1 Methodology
In order to capture data on how users behaved when facing a download with checksum information
and how they reacted to the extension warnings, we followed a refined Experience SamplingMethod
(rESM) [46]. Experience Sampling involves asking participants to report on their experiences at
specific points throughout the day. The method is regularly applied in studies of Human-Computer
Interaction [47–49]. A typical drawback of the method is that it could be considered invasive
by participants if they are sampled at random times. This is why, in recent years, researchers
have proposed to refine the method by modeling the participants’ context [46, 50]. The goal of
these questionnaires was to: (a) collect data on whether people noticed checksums on webpages;
(b) whether they understood how to use the checksums (i.e., how checksums work); (c) whether
they were going to compute and verify the checksums or take other security precautions such
as scanning the file for viruses; (d) record self-reported measure of security of their system. The
questions of the rESM are available (in French) in Figure 14.
These questionnaires were presented to the participants of the study only if any one of the

following criteria were met: (a) the participant triggered a download from a webpage that does not
contain a checksum; (b) the automated verification of a checksum succeeded; (c) the automated
verification of a checksum failed; (d) the participant encountered a checksum but did not download
any file from the webpage. In the situation (a), (b) or (c), the rESM questionnaire was displayed
immediately after the completion of either the download or the verification. A fixed delay of 2
seconds was added after the page was loaded (i.e., JavaScript load event), before presenting the
questionnaire following trigger (d). This means that the checksum was visible on the page for a
few seconds before the questionnaire was shown. In order not to overload the participants, we also
established that the mini questionnaires should not be triggered more than once per day on the
same participant, per type of event.

Given that the extension was designed to alter the natural online browsing behavior by making
users more careful with regard to downloads, we included in the experimental design a control
group. In the control condition, the extension would be collecting data but not intervening during
downloads. Each participant was randomly assigned (with probability 1/2) to one of two groups.
The control group did not have the checksum verification result in the user interface (see Figure
15). The experimental group had, based on the user feedback collected in the in-situ experiment, a
revised messages and layout of the verification result popup (see Figure 15). Adapted questionnaire

ACM Trans. Priv. Sec., Vol. 24, No. 1, Article 4. Publication date: August 2020.

A Study on the Use of Checksums for Integrity Verification of Web Downloads 4:23

messages were displayed when a verification was made. For both groups, the data collection of
the browsing and download history was activated. Both groups received the rESM questionnaires
when the specific browsing conditions were met.

Finally, as we foresaw a small occurrences of downloads for which participants might incur into
a checksum, we designed an exit activity that participants had to complete before collecting their
financial incentive for the experiment. We designed a webpage with links to two apps they had
to install on their computers. The webpage contained checksum so that it triggered our browser
extension. For one app, the checksum was correct, while for the other app, it was incorrect; the
ordering of the apps (correct/incorrect) was randomized to avoid presentation biases. This was
intentionally designed to trigger downloads with valid checksums and downloads which could
have been potentially tampered, and analyze reactions.

6.1.1 Apparatus. In order to capture the browsing and download behavior of the users and the
answers of the rESM questionnaires, we developed a system consisting of two parts: a browser
extension – to be installed in the participants’ browsers – and a web server that communicated
with the extension.

Chrome Extension. For this experiment, we adapted the browser extension that we initially used
in the lab experiment (see Sec. 4.2). We added the following new functionalities:

• It captured and stored all browsing and download activities of the user. This consisted of
the visited/downloaded URL, the timestamp, and the unique ID assigned to each participant
during the installation process. This data was stored on the local machine and regularly
uploaded to our servers.

Fig. 14. Questions prompted by the browser extension when a download with a checksum on the webpage
was detected. The first two questions were omitted in the case of a download without a checksum on the
webpage. Top-left: Did you notice this sequence of letters and numbers on the page [checksum string]? [Yes/ No/
Not sure]. Top-right: Would you do anything with this sequence of letters and numbers? If yes, what? [free text]
Bottom-left: Are you going to do anything with the file you just downloaded [filename] before opening/executing
it? [free text] Bottom-right: How secure is your computer in your opinion? [Likert 7-levels from Not secure to
Very secure].

ACM Trans. Priv. Sec., Vol. 24, No. 1, Article 4. Publication date: August 2020.

4:24 Meylan et al.

(a) Correct checksummessage. Title: “The integrity of the downloaded file
has been successfully verified”. Text: “The fingerprint of the downloaded
file corresponds to the fingerprint highlighted in the webpage.”

(b) Incorrect checksum. Title: “The downloaded file has possibly been
corrupted!”. Text: “The fingerprint of the downloaded file does not match
those available on the webpage. It is very likely that the file has been
modified by a third party. It has therefore been deleted. Learn more...
Download again (dangerous)”

Fig. 15. Screenshot of the user interface, in French, of the extension (used in the in-the-wild experiment).

• It presented participants with the short aforementioned questionnaire. From a UI perspective,
the questions were also displayed in popup windows with the question at the top and the
answer options (or text field) right below.

In addition to these two functionalities, we updated the text of the popup messages according to
the feedback we received during the lab study. Particularly, we changed the mechanism by which
users were informed about non-matching checksums: while in the lab study we only displayed
a warning message, for this experiment, the extension was deleting the potentially dangerous
downloaded file and displaying a warning message. Basically, while for the lab experiment the
participant could easily ignore the popup, in the field deployment we took a safer approach for
which the user was actually required to read the warning and to explicitly click on a link if they
wanted to bypass the verification.

The code of the revised browser extension was structured and implemented using the Google
developers guidelines and the Chrome extension APIs. The extension had three main functions.
Checksum verification are usually proposed for files that can be executed on the computer. However,
according to our adversary model, any file hosted on a different server can benefit from an integrity
verification (i.e., Microsoft Office or PDF documents [CVE-2017-0199], [51]). To collect relevant
information, the extension monitored the Chrome download manager and sent back all information
available in the downloadItem object (Object available through the Chrome Extension API).

Server. We set-up a Django web server with which the browser extension synchronizes. Addi-
tionally, the server contained a page with a step-by-step setup guide to install the extension and a
dashboard for the researchers to monitor the progress of the study. Finally, the same server hosted
the page we used for the exit task, where we asked participants to download two apps, one for

ACM Trans. Priv. Sec., Vol. 24, No. 1, Article 4. Publication date: August 2020.

A Study on the Use of Checksums for Integrity Verification of Web Downloads 4:25

which the checksum was correct and the other for which the checksum was (purposely made)
incorrect.

6.2 Participants
To take part in the 4-month long study, a total of 349 potential participants enrolled online for the
experiment and were assessed for eligibility. These individuals volunteered to be part of a subject
pool (consisting of approximately 8,000 subjects, most of whom were students) for behavioral
experiments at the University of Lausanne (UNIL). A specialized unit at our institution, called Labex,
managed the subject pool, took care of the randomization and enrollment processes, automated
the transfers of financial incentives, and kept secure the contact information of the participants
of the study. We collected demographic data through a short survey that also served to check
eligibility for the study (i.e., a screener). The questionnaire verified the browser type used and
only allowed Chrome users on desktop or laptop computer to continue. We also required the user
to be at least once a week on their computer to join the experiment. If they corresponded to this
profile, they were asked additional demographic questions and invited to participate. The main
reason why potential participants were refused is that they only attempted to fill the screener from
a mobile device and did not start the questionnaire again from Chrome on their computers. At the
end of the screening process, a total of 152 people were selected to participate in the experiment.
However, during the study, 18 participants dropped out (11.8% attrition rate), thus leaving us with
a total of 134 that left the browser extension active for the 4 months of the study. Out of the
134 participants who completed the study, 57% (or 76) were female. The age distribution was as
follows: 84% (113) were aged between 18 and 23, 15% (20) were between 24 and 30, and 1% (1) were
over 30. We extracted the OS used from the user-agent string of the participant. About half of
the participants were macOS users (45% or 60) and the other half Windows users (55%, or 74). A
majority of users were from the Université de Lausanne (UNIL) (57%, or 77), the second group was
from Ecole Polytechnique Fédérale de Lausanne (EPFL) (33%, or 44) and the last 10% (13) came
from different schools in the French-speaking regions of Switzerland. A total of 134 participants
remained active throughout the whole 4 months of the study. Concerning the two groups of the
study, (44%, or 59) participants were assigned to the experimental group and (56%, or 75) to the
control group. The results in the remainder of this section refer to the participants who remained
active. However, concerning the last part of the study, only 117 participants completed the exit
task. Therefore when we will describe this part of the experiment, the statistics refer to only the
participants who completed this last activity.

6.2.1 Procedure. The screening process and the experiment were conducted in French. Registered
subjects on the Labex panel received an e-mail invitation to fill out the online screener. The first
page of the screener contained a description of the study, and a checkbox where participants could
provide their informed consent. The consent form also described the goal of the study (i.e., an
observation of the browsing and download behavior), the condition of participation, the data being
collected (and the associated data management plan), the procedure to withdraw from the study,
and information about the financial incentive. In addition to selecting the right participants, the
screener questionnaire was used to setup participants for the study. At the end of the survey – and
only for qualifying respondents – a request was made to our server to be assigned a participant ID.
The server created a new ID in the users table and returned that to the survey platform that stored
the ID together with the other responses of the screener. This process was used to separate the
personal identifiable information of the participants (or PII) from the collected dataset. Also, this
process would assign each new participant at random to the experimental or the control group.

ACM Trans. Priv. Sec., Vol. 24, No. 1, Article 4. Publication date: August 2020.

4:26 Meylan et al.

Once the survey platform received the ID, the participant was automatically redirected to the
extension installation instruction page.22 The page contained a link to the extension on the Chrome
web store and step-by-step guide on how to complete the setup. Participants also received the same
information via e-mail. The page also provided information on how to pause the data collection
of the extension, if the user wished to do so (e.g., for a browsing session that they might wanted
to exclude from the data collection). Participants were also instructed to contact us via email if
they wished to delete a browsing session that had been already captured. On startup, the extension
verified two conditions. The first one was checking that the user ID existed in the database. This
variable was saved using synchronized storage from the Chrome API. In the event that participant
would start using Chrome on another computer andwould log in their Google account, the extension
would be installed on the new computer and the participant ID would be automatically added.
This user ID also determines if users would see the download verification messages. If no ID was
registered in the storage, the extension would use a JavaScript prompt to ask the user to enter their
ID (communicated by e-mail and available on their installation page). We chose to use a JavaScript
prompt because it is an intrusive way of communication and we did not want a participant to start
a browsing session without being identified. The second check was to ensure that the extension
would be able to access the downloaded files in order to verify checksums. We used a less intrusive
way than the prompt to communicate this setup process to the user. If the URL file access was not
allowed, the extension would open a page where it explains how to grant this permission to the
extension.
Once the extension was correctly installed on the participant’s computer, the only situation in

which a user would interact with the extension would be either during a verified download (for the
experimental group) or when an rESM questionnaire was triggered (for both groups) (see Sec. 6.1).
The participants were required to keep the extension installed on their main computer for a

duration of 4 months. During this time, we monitored the server health. A secondary server was
tasked to contact our server every minutes to ensure availability. Also, every days at 12pm, the
main server sent an email to our team containing the last 24h graphs about CPU, memory and
disk usage. The mail also included the IDs of participants that did not sent any data to the server
for the last 5 days. When faced with such inactive participants, we contacted them by mail to
ensure that they were still using the plugin on their personal computer. During the 4 months of the
study, we contacted a total of 77 participants. Of these 59 reactivated their extension and continued
the study while 18 participants dropped out of the study (11.8% attrition rate). The feedback we
received from the inactive participants to explain their inactivity – when we contacted them – was
very diverse. The most common reason was taking a few days off their computer, using only their
smartphone/tablet instead for browsing the Web. The other reasons include not having Chrome
set as default browser, the use of a secondary computer (e.g., a desktop for gaming), or even the
purchase of a new computer.

At the end of the 4-month long experiment, we asked participants to complete a final task. They
received instructions to visit one page located on our server. The page contained instructions to
download and install two apps on their computers. Once installed, they had to enter their participant
ID. This allowed us to collect feedback on the extension UI and see if they proceed to install the
app with the incorrect checksum. Participants received CHF 20 (∼USD 20) for their participation in
the experiment. In addition, all participants took part in a raffle of 4 prices of CHF 100 at the end of
the study.

22The original version of the webpage [French] is available at https://checksum.unil.ch/install/, last visited December 2019.
Archival version at https://osf .io/za6j5/, last visited December 2019.

ACM Trans. Priv. Sec., Vol. 24, No. 1, Article 4. Publication date: August 2020.

https://checksum.unil.ch/install/
https://osf.io/za6j5/

A Study on the Use of Checksums for Integrity Verification of Web Downloads 4:27

6.2.2 Measures. In order to answer our research questions, we relied on a combination of objective
observations (logged by the browser extension) and self-reported data (collected through the rESM
surveys). To address RQ4 and RQ5, for every webpage visited by a participant, the extension sent
back a summary of the webpage to our server (i.e., a sanitized URL). On our server, we collected
meta-data about the subject (IP address of the participant, user-agent string, time of visit and
participant ID) and also, the fully qualified domain name (FQDN) of the page visited. It was the
extension which took care of transforming the full URL into FQDN; for example, it transformed
“https://www.google.com/search?q=cat” into “www.google.com”. We did this transformation
to avoid the collection of password or security token encoded in the URL. However, if a webpage
visited would contain a checksum or a hashing algorithm name, the full URL and the related
checksums information were saved on our server. We chose to keep the full URL so we could
inspect the webpages that are false positive and refine our checksum selection criteria. The data
was accessible only to the researchers of this study and will be deleted after the publication of the
results, at the latest, one year after the end of the experiment. We mentioned these points when
collecting consent from the participants at the beginning of the experiment (the participants had to
sign a consent form).
In terms of self-reported data for RQ6, as the extension detected a checksums, the digest on

the page was highlighted and the following two questions presented to the participant (see top
questions of Figure 14):
(1) “Avez-vous remarqué cette séquence de lettres et de chiffres [checksum] sur la page ?” (Did you

notice this sequence of letters and numbers on the page: [checksum string]? [Yes/No/Not
sure]);

(2) “A votre avis, à quoi sert cette séquence de lettres et de chiffres ?” (What do you think this
sequence of letters and numbers is used for? [free text]).

As explained in Sec. 6.1, in order not to overload the participants, we triggered these mini question-
naires at most once per day, per type of event, per participant.
In terms of objective data we stored concerning the downloaded files, the three main pieces of

data that were relevant for RQ6 were (1) the MIME type (e.g., application/pdf for PDF documents)
of the downloaded file, (2) the address that initiated the download (i.e. the page on which the user
clicked to trigger the download) and (3) the address that the download was being made from
after all redirects (i.e. the address from where the data was downloaded). The MIME type is a
data format identifier that allows us to know if the downloaded file is potentially able to make
modification on the computer thus of interest for an attacker. The association of the address that
initiated the download and of the address that served the download allows us to determine whether
the downloaded file is stored on an external server or not. Note that this is a simple heuristic: we
compare the domain name of the server that served the webpage from where the download was
triggered with the domain name of the server that served the downloaded file. If they are different,
then we consider the download as happening on an external server. The extension was unable to
monitor what would happen to the file once the download was complete. Therefore, we had to rely
on the rESM survey to capture whether the participant was going to process the downloaded file
before executing it (see bottom-left question of Figure 14).
Lastly for RQ7, we were interested in comparing the self-reported security of the computer

between the control and the experimental group. For this reason, after each download (with or
without checksum) we asked all participants to rate on a 7-levels scale from ‘Not secure’ to ‘Very
secure’ the level of security of their computer (see bottom-right question of Figure 14).

6.2.3 Statistical Analysis. Nonparametric analysis was applied to the data considering the ordinal
nature of some of the observed variables. Hence, differences between security valuation across

ACM Trans. Priv. Sec., Vol. 24, No. 1, Article 4. Publication date: August 2020.

4:28 Meylan et al.

MIME type num. prop. [%]
application/pdf 9677 55.61
image/jpeg 1988 11.43
application/octet-stream 1151 6.61
application/vnd.openxmlformats-officedocument.wordprocessingml... 883 5.07
application/zip 648 3.72
audio/mpeg 284 1.63
application/vnd.openxmlformats-officedocument.presentationml... 221 1.27
image/png 210 1.21
text/plain 194 1.11
application/vnd.openxmlformats-officedocument.spreadsheetml... 182 1.05
application/msword 174 1.00
text/html 136 0.78
binary/octet-stream 106 0.61
video/mp4 100 0.57
image/gif 99 0.57
application/x-msdownload 93 0.53
application/x-bittorrent 92 0.53
application/binary 88 0.51
application/vnd.ms-powerpoint 88 0.51
application/force-download 57 0.33

Table 2. Top 20 MIME types of the 17,400 files participants downloaded during the experiment.

experimental conditions were tested suing the Kruskal-Wallis test (see RQ7 below). The level of
significance was taken as 𝑝 < .05.

6.3 Results and Analysis

(RQ4) How often do users download files from the Web and what types of files do they download?
During the 4 months of observation, the participants of the study visited a total of 657,608 web-
pages.23 On average each participant visited around 50.6 webpages every day. During the study,
participants downloaded a total of 17,400 files from the Web. On average each participant down-
loaded about 130 files, that is around 33 downloads each month. Table 2 presents the breakdown
of the different MIME types of the files downloaded by the participants of the study during the
experiment. We notice that 7.7% of these files are executable (i.e., octet-stream, binary), and 3.7%
are compressed archives, hence files that could potentially carry malicious code. Additionally, the
large majority 55.6% of downloads are PDFs and office documents that could also be injected with
corrupted macros or other harmful code. During the study, a total of 17 executable downloads
contained a checksum on the page that was verified by the browser extension. For 6 of the 17
downloads the participants that originated the download was in the experiment group, hence the
browser extension presented popup messages about the verification to the users. A large proportion
of the downloaded files came from e-mail attachments accessed via a webmail. The modest number
of executable files downloaded can be explained by the fact that users download the bulk of the
programs they need when they set-up their computers and only a few ones, sporadically, after that.

(RQ5)What is the prevalence and the current practices of checksums included in download webpages?
Of the 17,400 downloads recorded in the final dataset, 4,853 files (or 27.9%) were hosted on a server
that had a distinct domain name from the server that served the webpage of the site. This shows that

23Note that the numbers of webpages/downloads reported in this section are total numbers, not numbers of unique
webpages/downloads.

ACM Trans. Priv. Sec., Vol. 24, No. 1, Article 4. Publication date: August 2020.

A Study on the Use of Checksums for Integrity Verification of Web Downloads 4:29

about a third of the downloaded files we recorded in this study could potentially be compromised
following the threat model described in this paper. Similarly, we found that 923 downloads (or 5.3%)
originated from a server that was not configured with HTTPS, hence allowing potential attackers
to modify the files while being transferred to the machine requesting the download. Out of the
657,608 webpages visited by the participants during the study, only 153 pages (or 0.02%) contained
a checksum string, and of the 17,400 downloads events in the final dataset, 37 originated from one
of these webpages. We manually inspected these webpages and classified them into four categories:
(i) 70 (or 45.7%) webpages linked executable files and references the name of the algorithm used to
generate the checksum (i.e., SHA-256, MD5); (ii) 43 (or 28.1%) were false positives (i.e., webpages that
contained alphanumeric strings that matched our regular expression but that were not checksums);
(iii) 29 (or 19%) webpages linked torrent files (we will discuss this case below); and (iv) 11 (or
7.2%) webpages contained true checksums but the connected file was not an executable, hence the
extension did not verify the integrity. For instance, Zenodo provides checksums for PDFs24, and
Digicert for security certificates.25 Concerning the webpages with checksum that linked torrent
files, in these cases the participants visited a webpage that contained checksum information about
one or multiple files seeded through the peer-to-peer network.26 In addition, these webpages also
contained a .torrent file that could be downloaded from the webpage that contains metadata
about files and folders to be distributed, and usually also a list of trackers, which are computers
that help users of the system find each other. When participants of our experiment downloaded
torrent files from these webpages, the extension was triggered, however it could not possibly verify
the checksum as the file being downloaded from the browser (i.e., the .torrent file) was not the one
the checksum information on the webpage referred to.
Of the 7.7% of downloads involving executable files (plus the 3.7% of downloads involving

archives), 17 downloads were downloaded from a webpage containing both the checksum and the
name of the algorithm used. These were all executable files (i.e. .exe, .dmg, or .pkg) or archives (i.e.,
.zip). Finally, it is worth reporting that all of the checksums reported on the webpages we identified
in the study matched the linked resources. Table 3 reports the details of the resources with valid
checksum that our participants downloaded during the study.

(RQ6) What do Internet users most frequently do when they encounter a visible checksum? Out
of the 153 events in which participants opened a webpage that contained a checksum and were
prompted with a rESM questionnaire, we collected 35 valid responses. These 153 events were
created by only 45 distinct participants. The participant would typically look at multiple pages with
checksum under the same FQDN during the same day and thus receive only one questionnaire.
To the first question, namely whether they noticed the checksum on the webpage, 28 (or 80%)
participants replied that they did not see the checksum, while 3 (or 8.6%) replied that they were not
sure, and 4 (or 11.4%) that they had seen the checksum. In sum, 88.6% of respondents did not see or
were not sure about whether the checksum was on the webpage. In the follow-up question, we
asked the 35 respondents to explain, in their own words, what is the purpose of the sequence of
letters and numbers (i.e., the checksum or digest). Unfortunately, only one respondent provided an
almost-correct explanation of the purpose of checksums: Elle sert a verifier que mon téléchargement
est bien téléchargé car il s’agit de logiciel et le fichier doit être intact (It is used to check that my
download is correctly downloaded because it is a software and the file has to be intact) [Business
School student]. The rest of the respondents provided answers that were incorrect: e.g., Peut-être

24See an example here https://zenodo.org/record/204969#.XfpP4db0k1J, last visited December 2019.
25See https://www.digicert.com/digicert-root-certificates.htm, last visited December 2019.
26As an example, see https://osf .io/zw7u3/, last visited: Dec. 2019.

ACM Trans. Priv. Sec., Vol. 24, No. 1, Article 4. Publication date: August 2020.

https://zenodo.org/record/204969#.XfpP4db0k1J
https://www.digicert.com/digicert-root-certificates.htm
https://osf.io/zw7u3/

4:30 Meylan et al.

Filename Source address
gimp-2.10.10-setup.exe https://www.gimp.org/downloads/
RStudio-1.2.1335.dmg https://www.rstudio.com/products/rstudio/download/
R-3.5.3.pkg https://cran.r-project.org/bin/macosx/
vlc-3.0.6.dmg http://get.videolan.org/vlc/3.0.6/macosx/vlc-3.0.6.dmg
basic-miktex-2.9.7031-x64.exe https://miktex.org/download
python-3.7.2-macosx10.9.pkg https://www.python.org/downloads/
RStudio-1.1.463.exe https://www.rstudio.com/products/rstudio/download/
python-3.7.2-amd64.exe https://www.python.org/downloads/release/python-372/

VirtualBox-5.2.18-124319-OSX.dmg https://nas-webdav.epfl.ch/vpsi1arch/images_vdi/
IC_CO_IN-SC-Local/

VirtualBox-5.2.18-124319-Win.exe https://nas-webdav.epfl.ch/vpsi1arch/images_vdi/
IC_CO_IN-SC-Local/

basic-miktex-2.9.6942-x64.exe https://miktex.org/download
python-3.7.2.exe https://www.python.org/downloads/release/python-372/
winscp576setup.exe https://winscp.net/download/winscp576setup.exe

Popcorn-Time-0.3.10-Setup.exe http://mirror03.popcorntime.sh/repo/build/
Popcorn-Time-0.3.10-Setup.exe

TeamSpeak3-Client-win64-3.2.3.exe https://www.teamspeak.com/en/your-download/

Popcorn-Time-0.3.10-Mac.zip http://mirror03.popcorntime.sh/repo/build/
Popcorn-Time-0.3.10-Mac.zip

Panaustik64.exe https://www.panaustik.com/telechargement/
Table 3. Executables downloaded by the participants during the study fromweb pages where a valid checksum
was available.

un numéro de série ou d’identification pour le programme (Maybe is a serial number or identification
number for the program) [Basic Sciences student].

After a download event, we also prompted participants of the study with an rESM questionnaire
to understand whether they would do anything with the downloaded file before executing it. A
total of 155 responses from 97 distinct participants provided answers to this question during the
course of the study. The large majority of the responses (i.e., 124 or 80% of the responses) stated
they would directly execute the file. The remaining declared to either scan the file with an antivirus
software (i.e., 4 or 2.6% responses) or provided unclear answers (i.e., 26 or 16.8% responses). Only
one respondent reported performing a checksum verification on the file: Non, je fais confiance à
l’éditeur en l’occurrence. Sinon, je fais un check MD5 (No, I trust the developer. Otherwise, I do a MD5
check) [Criminal Sciences student]. This shows a misconception regarding the trust assumption:
Checksums are used in the case where a third-party host is compromised, not the software developer.
It is interesting to notice, that scanning a corrupted file with an antivirus might not protect entirely
from potential threats (e.g., malware with zero-day exploit).
At the end of the study we asked participants to complete a final task (see Sec. 6.2.1 above). A

total of 117 participants completed this step (while 17 participants dropped out at the very end). Of
the remaining participants, 48 (or 41%) were in the experimental condition (i.e., with extension
warnings active) and 69 (or 59%) participants were in the control group. During the final tasks
these participants were presented with the download of an app for which an incorrect checksum
was provided on the webpage. While almost all participants in the control group installed the
‘malicious’ app (except 4 or 3.4% participants who did not understand the instructions), 12 (or 10.3%)
participants of the experimental condition did not complete the install process even if they were
instructed to do so. Most of the other people in the experimental condition who forced the download
by using the ‘Download again (dangerous)’ button, did so because they trusted our institution: Si
j’en crois ce qui a été affiché, ‘il a été corrompu’. Je présume qu’il s’agit cependant du déroulement

ACM Trans. Priv. Sec., Vol. 24, No. 1, Article 4. Publication date: August 2020.

A Study on the Use of Checksums for Integrity Verification of Web Downloads 4:31

habituel de l’expérience (If I believe what is displayed, the file is corrupted. I presume this is however
the usual course of experience) [Criminal Sciences student]. This difference between the two groups
has to be ascribed to the warnings of the browser extension, which made participants more wary
of the potential threat.

(RQ7) Would users feel more secure if they could use a system that automates parts of the verification
process? On the last screen of the rESM questionnaire, we asked participants to rate the perceived
security of their computer using a Likert scale with 7 levels (this goes from 1=Extremely insecure,
to 7=Extremely secure). In the exit task of the study, a total of 117 participants were asked to
download and install two applications on their computer, one with a valid and one with an invalid
checksum. These participants experienced installing an application that could have been potentially
corrupted. To answer our RQ, we compared the security ratings provided by these participants
to the rESM question. A Kruskal-Wallis test showed that participants in the experimental group
reported higher security ratings (M=5.0 points, SD=1.4) for their computer than participants in the
control group (M=4.3 points, SD=1.7); H(1)=8.83, p<.05.

6.4 Limitations
Our participants were all university students, hence their age was relatively homogeneous (around
20 years old). Typically, age is considered to be related to the level of technical expertise of the person.
However, recent research has revealed that cognitive ability and previous technology experience are
better predictors of the ability of people to solve information-retrieval tasks [52]. In the presented
study, we did not control for these two factors. However, we might expect most university students
to possess relatively high cognitive abilities and to have had prior exposure to online technology.
Hence, we might expect a smaller share of users to understand and use checksums in the general
population than the share identified in our results.
Additionally, our experimental design required participants to regularly use Google Chrome

as their main browser or to be willing to use it primarily for the duration of the study. Although
Chrome holds the largest market share,27 there are lots of users that use alternatives such as Apple
Safari, Microsoft Edge and IE. The interesting aspect to note is that while Safari, Edge and IE
come preinstalled on computers running macOS and Windows, respectively, Chrome needs to be
installed, hence its users might be more tech-savvy than users who use the preinstalled browser.
Hence, we might expect that by including users of these other browsers in the sample we might
observe a smaller share of users who understand and use checksums than those identified in this
study.
Finally, in this study, we did not include browsing behavior on mobile devices. Reports show

that an increasing number of users access the Internet primarily – or exclusively – from a mobile
device.28 Going forward, research should study the use of checksums on mobile devices, which
might be specifically targeted by attackers.

7 GENERAL DISCUSSION
The number of Internet users potentially exposed to corrupted files is alarming. Our previous
large-scale study [1] showed that, out of the 62.2% of all the respondents who download programs
from the Internet, only 6.1% do so exclusively from official app stores, such as the Mac App Store
or the Microsoft Store. Checksums, if used correctly, could therefore prevent the execution of
potentially malicious code for more than half of the users who download files from the Internet.

27See https://en.wikipedia.org/wiki/Usage_share_of_web_browsers, last accessed June 2020.
28See https://www.pewresearch.org/internet/2019/06/13/mobile-technology-and-home-broadband-2019/, last accessed
June 2020.

ACM Trans. Priv. Sec., Vol. 24, No. 1, Article 4. Publication date: August 2020.

https://en.wikipedia.org/wiki/Usage_share_of_web_browsers
https://www.pewresearch.org/internet/2019/06/13/mobile-technology-and-home-broadband-2019/

4:32 Meylan et al.

Sadly and as expected, our recent in-the-wild experiment confirmed that the vast majority of
participants (88.6%) do not notice the presence of checksums, even when they are visible on the
download page. To make things worse, most participants in our experiments did not know how to
use this information even when we pointed them to the part of the page that contains the checksum.
However, when the browser extension was active, we observed differences in the participants’
reaction to corrupted downloads. Interestingly, only 25% of participants in this experiment stopped
the installation process of the program that has triggered the warning, whereas 40% of them did so
in the previous lab experiment. This is relatively surprising, as we might expect that users would be
more cautious with their own computer. However, it could also be due to the fact that participants
in the lab experiment were carefully instructed to follow some steps and were in a controlled
environment, whereas those in the in-the-wild experiment had fewer instructions and were in their
usual daily environment (where they dedicate less time to such tasks).
In this article, we have further uncovered some of the behavioral aspects that are associated

with a successful detection of a mismatch in two checksums, as performed in the browser’s UI
as well as in a separate program, i.e., the command-line. Our statistical analysis showed that the
number of transitions between the terminal and the web browser’s window is significantly higher
for participants who detected the mismatch, and that those participants also checked the entire
sequence more often than the ones who did not notice the mismatch. However, to our surprise,
the dwell time was smaller when the warning was shown, suggesting that the part of the UI that
carries the warning message was effective.

In sum, these findings indicate that manually inspecting the integrity of downloads is a process
that is cognitively intense, and requires a sophisticated mental model of the security concept behind
checksums. We cannot reasonably expect that most Internet users will be able to manually perform
these checks on downloaded files. Finally, even if we observed some positive effects of the extension
on users’ behavior, the results also show that we could improve the warning message in order to
further reduce the fraction of users who execute potentially harmful files downloaded from the
Internet.
In order to improve the security and usability of web downloads, we have shown that it was

crucial to automate the checksum verification process, as alluded to by Tan et al. [28]. We propose an
approach that consists of a mix of short- and long-term solutions. In the short term, our in-the-wild
experiment has shown that our proof-of-concept Chrome extension did not detect corrupted files
for any of the 17 downloads where it was triggered. Although very precise, we cannot exclude that
it missed some websites where the checksums were available in some other form (e.g., an image or
iframe element). Also, due to the limited sample size, we refrain from generalizing the success
rate to the entire Web.

Due to the challenges in assessing its recall and false positives, such a short-term solution is likely
insufficient to fully protect the 73% of the downloads (PDFs and executables) that could potentially
be harmful, if corrupted. Instead, as a long-term solution, we propose to extend the coverage of
the SRI specification [7] to include HTML a elements that point to files to be downloaded, and
optionally the meta and iframe elements. Such a solution would, however, require more effort
from the website owners (to serve the SRI integrity field), and perhaps from content creators as
well (to generate checksums for their files). Finally, it is also crucial to increase awareness about
the threat vectors antiviruses can and cannot handle. As we have observed, some participants felt
safe because they scanned files with an antivirus software. Unfortunately, an antivirus does not
protect from all possible threats, especially from malware with zero-day exploits.
We firmly believe that the entire web ecosystem (standards bodies, browser vendors, content

publishers and end-users) would greatly benefit from a safer and more usable experience, if such
an obvious and arguably underexploited attack vector was eradicated.

ACM Trans. Priv. Sec., Vol. 24, No. 1, Article 4. Publication date: August 2020.

A Study on the Use of Checksums for Integrity Verification of Web Downloads 4:33

8 CONCLUSION & FUTUREWORK
In this work, we pursued a line of research on the use of checksums for integrity verification of
web downloads and made a number of contributions. In particular, we showed that the current
verification process is taxing and error prone, both in a controlled and in a real-world environment.
Specifically, we demonstrated that an adversary can successfully mount an attack by replacing a
program with a malware with a checksum that partially matches that of the program since many
users check only the beginning of the checksums.
The logical outcome of this work is to automate the checksum verification, so as to increase

the usability of this security feature and to make it available to non-technical users. Hence, as a
second contribution of this work, we developed a browser extension that computes the checksums
of the files downloaded from the Web and matches them against those found on webpages. The
usability evaluation of the extension suggested that it simplified the verification process and was
effective in dragging the user attention on the warnings describing the risks of downloading and
executing possibly corrupted files. The four-month deployment of the extension showed that
none of the downloaded files (with a checksum available) were corrupted (even though such
download happened very rarely over the course of the study). This deployment further confirmed
that warnings were not always sufficient to prevent a user from downloading a corrupted file, thus
that a more disruptive change is needed to protect integrity of web downloads.
An interesting research avenue for future work is to investigate means for users to identify

the origin of the checksums displayed on download webpages (i.e., developer-generated vs. host-
generated) as well as means for handling updates of download files (i.e., the associated update of
the checksums). One possible option is to rely on digital signatures29 but such solutions might be
vulnerable to version-rollback attacks (e.g., a program file could be maliciously replaced with an
older version of it – with known exploitable vulnerabilities).

Finally, we are currently writing a W3C proposal to extend subresource integrity to other HTML
elements including links. We intend to promote our proposal to (and collaborate with) the different
stakeholders involved, that is the W3C and web browsers (e.g., Google, Mozilla) development teams
in order to have a concrete impact on the security of Internet users.

ACKNOWLEDGEMENTS
The authors express their sincere gratitude to Italo Dacosta, Andreas Kramm, Nicolas Le Scouarnec,
Adrienne Porter Felt, Nina Taft, Lawrence You, and Blase Ur for their feedback. The authors also
warmly thank Holly Cogliati for her great editing job on the manuscript. This work was partially
funded with grant #19024 from the Hasler Foundation and with a grant from HEC Lausanne. This
work was carried out while Alexandre Meylan and Bertil Chapuis were with UNIL.

REFERENCES
[1] M. Cherubini, A. Meylan, B. Chapuis, M. Humbert, I. Bilogrevic, and K. Huguenin, “Towards Usable Checksums:

Automating the Integrity Verification of Web Downloads for the Masses,” in Proc. of the ACM Conf. on Computer and
Communications Security (CCS). ACM, Oct. 2018, pp. 1256–1271.

[2] K. Turner, “Developers consider Apple’s App Store restrictive and anticompetitive, report shows,”Washington Post,
2016-07-15.

[3] S. Khandelwal, “Flaw in Popular Transmission BitTorrent Client Lets Hackers Control Your PC Remotely,”
https://thehackernews.com/2018/01/bittorent-transmission-hacking.html, 2018.

[4] “Linux Mint Website Hacked; ISO Downloads Replaced with a Backdoor - Security News - Trend Mi-
cro USA,” https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/linux-mint-website-
hacked-iso-downloads-replaced-with-a-backdoor.

29https://github.com/w3c/webappsec-subresource-integrity/blob/master/signature-based-restrictions-
explainer.markdown, for instance; last accessed: July 2020.

ACM Trans. Priv. Sec., Vol. 24, No. 1, Article 4. Publication date: August 2020.

https://github.com/w3c/webappsec-subresource-integrity/blob/master/signature-based-restrictions-explainer.markdown
https://github.com/w3c/webappsec-subresource-integrity/blob/master/signature-based-restrictions-explainer.markdown

4:34 Meylan et al.

[5] H.-C. Hsiao, Y.-H. Lin, A. Studer, C. Studer, K.-H. Wang, H. Kikuchi, A. Perrig, H.-M. Sun, and B.-Y. Yang, “A Study of
User-Friendly Hash Comparison Schemes,” in Proc. of the Computer Security Applications Conf. (ACSAC). IEEE, Dec.
2009, pp. 105–114.

[6] Sergej Dechand, Dominik Schürmann, Karoline Busse, Yasemin Acar, Sascha Fahl, and Matthew Smith, “An Empirical
Study of Textual Key-Fingerprint Representations,” in Proc. of the USENIX Security Symp. (USENIX Security). USENIX,
2016.

[7] W3C, “Subresource Integrity,” https://www.w3.org/TR/SRI/, 2016.
[8] S. M. Furnell, P. Bryant, and A. D. Phippen, “Assessing the security perceptions of personal Internet users,” Computers

& Security, vol. 26, no. 5, pp. 410–417, Aug. 2007.
[9] C. L. Anderson and R. Agarwal, “Practicing Safe Computing: A Multimedia Empirical Examination of Home Computer

User Security Behavioral Intentions,” MIS Q., vol. 34, no. 3, pp. 613–643, Sep. 2010.
[10] V. Rishi, “Cyber Security Breaches Survey 2018,” United Kingdom, Survey, Apr. 2018.
[11] E. M. Redmiles, S. Kross, and M. L. Mazurek, “Where is the Digital Divide?: A Survey of Security, Privacy, and

Socioeconomics,” in Proc. of the ACM Conf. on Human Factors in Computing Systems (CHI). ACM, 2017, pp. 931–936.
[12] ——, “How I Learned to Be Secure: A Census-Representative Survey of Security Advice Sources and Behavior,” in Proc.

of the ACM Conf. on Computer and Communications Security (CCS). ACM, 2016, pp. 666–677.
[13] Elisa M. Redmiles, Amelia R. Malone, and Michelle L. Mazurek, “I Think They’re Trying to Tell Me Something: Advice

Sources and Selection for Digital Security,” in Proc. of the IEEE Symp. on Security and Privacy (S&P), May 2016, pp.
272–288.

[14] S. Egelman, L. F. Cranor, and J. Hong, “You’ve been warned: An empirical study of the effectiveness of web browser
phishing warnings,” in Proc. of the ACM Conf. on Human Factors in Computing Systems (CHI). ACM, 2008, pp.
1065–1074.

[15] J. Sunshine, S. Egelman, H. Almuhimedi, N. Atri, and L. F. Cranor, “Crying Wolf: An Empirical Study of SSL Warning
Effectiveness.” in Proc. of the USENIX Security Symp. (USENIX Security). USENIX, 2009, pp. 399–416.

[16] D. Akhawe and A. P. Felt, “Alice in Warningland: A Large-Scale Field Study of Browser Security Warning Effectiveness.”
in Proc. of the USENIX Security Symp. (USENIX Security). USENIX, 2013.

[17] S. Egelman and S. Schechter, “The importance of being earnest [in security warnings],” in Proc. of the Int’l Conf. on
Financial Cryptography and Data Security (FC). Springer, 2013, pp. 52–59.

[18] D. Modic and R. Anderson, “Reading this may harm your computer: The psychology of malware warnings,” Computers
in Human Behavior, vol. 41, pp. 71–79, 2014.

[19] A. Bianchi, J. Corbetta, L. Invernizzi, Y. Fratantonio, C. Kruegel, and G. Vigna, “What the app is that? deception and
countermeasures in the android user interface,” in Proc. of the IEEE Symp. on Security and Privacy (S&P). IEEE, 2015,
pp. 931–948.

[20] J. L. Jenkins, B. B. Anderson, A. Vance, C. B. Kirwan, and D. Eargle, “More harm than good? How messages that
interrupt can make us vulnerable,” Information Systems Research, vol. 27, no. 4, pp. 880–896, 2016.

[21] M. Silic and A. Back, “Deterrent Effects of Warnings on User’s Behavior in Preventing Malicious Software Use,” in Proc.
of the Hawaii International Conference on System Sciences (HICSS), 2017.

[22] R. W. Reeder, A. P. Felt, S. Consolvo, N. Malkin, C. Thompson, and S. Egelman, “An Experience Sampling Study of User
Reactions to Browser Warnings in the Field,” in Proc. of the ACM Conf. on Human Factors in Computing Systems (CHI).
ACM, 2018, pp. 512:1–512:13.

[23] C. Bravo-Lillo, S. Komanduri, L. F. Cranor, R. W. Reeder, M. Sleeper, J. Downs, and S. Schechter, “Your Attention Please:
Designing Security-decision UIs to Make Genuine Risks Harder to Ignore,” in Proc. of the Symp. on Usable Privacy and
Security (SOUPS). ACM, 2013, pp. 6:1–6:12.

[24] C. S. Weir, G. Douglas, M. Carruthers, and M. Jack, “User perceptions of security, convenience and usability for ebanking
authentication tokens,” Computers & Security, vol. 28, no. 1-2, pp. 47–62, 2009.

[25] L. Tam, M. Glassman, and M. Vandenwauver, “The psychology of password management: A tradeoff between security
and convenience,” Behaviour & Information Technology, vol. 29, no. 3, pp. 233–244, 2010.

[26] M. Fagan and M. M. H. Khan, “Why do they do what they do?: A study of what motivates users to (not) follow computer
security advice,” in Proc. of the Symp. on Usable Privacy and Security (SOUPS). ACM, 2016, pp. 59–75.

[27] K. Krombholz, K. Busse, K. Pfeffer, M. Smith, and E. von Zezschwitz, “"If HTTPS Were Secure, I Wouldn’t Need 2FA" -
End User and Administrator Mental Models of HTTPS,” in Proc. of the IEEE Symp. on Security and Privacy (S&P). IEEE,
May 2019, pp. 1138–1155.

[28] J. Tan, L. Bauer, J. Bonneau, L. F. Cranor, J. Thomas, and B. Ur, “Can Unicorns Help Users Compare Crypto Key
Fingerprints?” in Proc. of the ACM Conf. on Human Factors in Computing Systems (CHI). ACM, 2017, pp. 3787–3798.

[29] N. Unger, S. Dechand, J. Bonneau, S. Fahl, H. Perl, I. Goldberg, and M. Smith, “SoK: Secure Messaging,” in Proc. of the
IEEE Symp. on Security and Privacy (S&P). IEEE, May 2015, pp. 232–249.

ACM Trans. Priv. Sec., Vol. 24, No. 1, Article 4. Publication date: August 2020.

A Study on the Use of Checksums for Integrity Verification of Web Downloads 4:35

[30] R. Abu-Salma, M. A. Sasse, J. Bonneau, A. Danilova, A. Naiakshina, and M. Smith, “Obstacles to the Adoption of Secure
Communication Tools,” in Proc. of the IEEE Symp. on Security and Privacy (S&P). IEEE, May 2017, pp. 137–153.

[31] Elham Vaziripour, Justin Wu, Mark O’Neill, Ray Clinton, JordanWhitehead, Scott Heidbrink, Kent Seamons, and Daniel
Zappala, “Is that you, Alice? A Usability Study of the Authentication Ceremony of Secure Messaging Applications,” in
Proc. of the Symp. on Usable Privacy and Security (SOUPS). ACM, 2017.

[32] “Checksum On the Go - Chrome Webstore,” https://chrome.google.com/webstore/detail/checksum-on-the-
go/fholnooplijidhdagedffljaphholpea.

[33] “Files MD5 SHA1 Calculate & Compare – Add-ons for Firefox,” https://addons.mozilla.org/en-
US/firefox/addon/calculate-md5-sha1-hash-che-1/?src=search.

[34] “Certificates and Digitally Signed Applications: A Double Edged Sword,” https://eventtracker.com/tech-
articles/certificates-and-digitally-signed-applications-a-double-edged-sword/, Feb. 2016.

[35] N. Vratonjic, J. Freudiger, V. Bindschaedler, and J.-P. Hubaux, “The Inconvenient Truth About Web Certificates,” in
Proc. of the Workshop on Economics of Information Security and Privacy (WEIS). Springer, 2013, pp. 79–117.

[36] J. Cappos, J. Samuel, S. Baker, and J. H. Hartman, “A Look in the Mirror: Attacks on Package Managers,” in Proc. of the
ACM Conf. on Computer and Communications Security (CCS). ACM, 2008, pp. 565–574.

[37] B. Preneel, “Cryptographic hash functions,” Transactions on Emerging Telecommunications Technologies, vol. 5, no. 4, pp.
431–448, 1994.

[38] Computer Security Division, Information Technology Laboratory, “NIST Policy on Hash Functions - Hash Functions |
CSRC,” https://csrc.nist.gov/projects/hash-functions/nist-policy-on-hash-functions.

[39] B. Chapuis, O. Omolola, M. Cherubini, M. Humbert, and K. Huguenin, “An Empirical Study of the Use of Integrity
Verification Mechanisms for Web Subresources,” in Proc. of The Web Conference. ACM, Apr. 2020, pp. 34–45.

[40] B. B. Anderson, C. B. Kirwan, J. L. Jenkins, D. Eargle, S. Howard, and A. Vance, “How Polymorphic Warnings Reduce
Habituation in the Brain: Insights from an fMRI Study,” in Proc. of the ACM Conf. on Human Factors in Computing
Systems (CHI). ACM, 2015, pp. 2883–2892.

[41] A. P. Felt, A. Ainslie, R. W. Reeder, S. Consolvo, S. Thyagaraja, A. Bettes, H. Harris, and J. Grimes, “Improving SSL
Warnings: Comprehension and Adherence,” in Proc. of the ACM Conf. on Human Factors in Computing Systems (CHI).
ACM, 2015, pp. 2893–2902.

[42] M. Silic, J. Barlow, and D. Ormond, “Warning! A comprehensive model of the effects of digital information security
warning messages,” in Proc. of the IFIP Workshop on Information Systems Security Research. IFIP, 2015.

[43] A. Poole and L. J. Ball, “Eye Tracking in Human-Computer Interaction and Usability Research: Current Status and
Future Prospects,” in Encyclopedia of Human Computer Interaction, 2006, p. 13.

[44] J. H. Goldberg, M. J. Stimson, M. Lewenstein, N. Scott, and A. M. Wichansky, “Eye tracking in web search tasks: Design
implications,” in Proc. of the Symp. on Eye Tracking Research & Applications (ETRA). ACM, 2002, p. 51.

[45] M. A. Just and P. A. Carpenter, “Eye fixations and cognitive processes,” Cognitive Psychology, vol. 8, no. 4, pp. 441–480,
Oct. 1976.

[46] M. Cherubini and N. Oliver, “A Refined Experience Sampling Method to Capture Mobile User Experience,”
arXiv:0906.4125 [cs], Jun. 2009.

[47] S. Consolvo and M. Walker, “Using the experience sampling method to evaluate ubicomp applications,” IEEE Pervasive
Computing, vol. 2, no. 2, p. 24–31, Jun 2003.

[48] G. Iachello, K. N. Truong, G. D. Abowd, G. R. Hayes, and M. Stevens, “Prototyping and sampling experience to evaluate
ubiquitous computing privacy in the real world,” in Proc. of the SIGCHI Conf. on Human Factors in Computing Systems
(CHI). ACM, 2006, p. 1009–1018.

[49] C. Mancini, K. Thomas, Y. Rogers, B. A. Price, L. Jedrzejczyk, A. K. Bandara, A. N. Joinson, and B. Nuseibeh, “From
spaces to places: Emerging contexts in mobile privacy,” in Proc. of the Int’l Conf. on Ubiquitous Computing (UbiComp).
ACM, 2009, p. 1–10.

[50] S. S. Intille, J. Rondoni, C. Kukla, I. Ancona, and L. Bao, “A context-aware experience sampling tool,” in Proc. of the
SIGCHI Conf. on Human Factors in Computing Systems (CHI) - Extended abstracts. ACM, 2003, p. 972–973.

[51] F. Schmitt, J. Gassen, and E. Gerhards-Padilla, “PDF Scrutinizer: Detecting JavaScript-based attacks in PDF documents,”
in Proc. of the Int’l Conf. on Privacy, Security and Trust (PST). IEEE, Jul. 2012, pp. 104–111.

[52] M. Crabb and V. L. Hanson, “Age, technology usage, and cognitive characteristics in relation to perceived disorientation
and reported website ease of use,” in Proc. of the Int’l ACM SIGACCESS Conf. on Computers & Accessibility (ASSETS).
ACM, Oct. 2014, pp. 193–200.

ACM Trans. Priv. Sec., Vol. 24, No. 1, Article 4. Publication date: August 2020.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Download Behavior
	2.2 Effectiveness of Security Warnings
	2.3 File Integrity Verification
	2.4 Automating Integrity Verification

	3 System and Threat Model
	3.1 System and Threat Model
	3.2 Checksums
	3.3 Subresource Integrity

	4 Automating Checksum Verification
	4.1 Extending Subresource Integrity to Links
	4.2 Checksum Verification: Browser Extension

	5 Controlled User Experiment
	5.1 Participants
	5.2 Apparatus
	5.3 Procedure
	5.4 Results

	6 User Experiment in the Wild
	6.1 Methodology
	6.2 Participants
	6.3 Results and Analysis
	6.4 Limitations

	7 General Discussion
	8 Conclusion & Future Work
	References

