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Abstract—Data deduplication techniques are often used by
cloud storage systems to reduce network bandwidth and storage
requirements. As a consequence, the current research literature
tends to focus most of its algorithmic efforts on improving
the Duplicate Elimination Ratio (DER), which reflects the com-
pression achieved using a given algorithm. Yet, the importance
of this indicator tends to be overestimated, while another key
indicator, namely throughput, tends to be underestimated. To
substantiate this claim, we reimplement a selection of popular
Content-Defined Chunking algorithms (CDC) and perform a
detailed performance analysis. On this basis, we show that the
gain brought by algorithms that are aggressively focusing on
DER often come at a significant cost in terms of throughput.
As a consequence, we advocate for future optimizations taking
throughput into account and for making balanced tradeoffs
between DER and throughput.

Index Terms—content-defined chunking; duplicate elimination
ratio; rolling hash function; performance; throughput

I. INTRODUCTION

In recent years, we have witnessed a rapid shift from

desktop computers to mobile and pervasive devices. That is,

people nowadays tend to be using multiple devices to access

their data, which they expect to be available and consistent

throughout all their computing devices. In addition, users also

expect to be able to have access to all past versions of a given

piece of data, e.g., whenever editing some file, they want to

be able to come back to whatever intermediate version of the

file they have created.

Faced with such requirements, cloud storage services usu-

ally have to deal with redundant and superfluous copies of

data. Some files can be identical or share a significant part of

their content. In this context, data deduplication techniques

aim at removing redundancies in order to reduce storage

requirements and network bandwidth. Deduplication can occur

at the level of whole files or at the level of their subparts

also called chunks. When dealing with chunks, file descriptors

containing chunk references become necessary to describe the

original data. As a rule of thumb, the smaller the chunks,

the greater the deduplication. However, with small chunks

come large file descriptors and a loss of locality in the data

since chunks can be stored at completely different places.

Furthermore, as for compression algorithms, deduplication

algorithms can incur space-time tradeoffs in order to improve

the efficiency of the deduplication.

Interestingly, there exists a gap between the research liter-

ature on the deduplication algorithms and what is commonly

used in practice. On one hand, most of the research literature

aggressively focuses on the efficiency of data deduplication

algorithms and trades computing power for storage space [3],

[4], [6], although many devices remotely accessing data tend

to have limited computing resources (and battery life). On the

other hand, most popular cloud storage services, such as Drop-

box, rely on rather simple chunking algorithms [2]. In addition,

in [7], Meyer et al. recently demonstrated that, in the context

of snapshots taken over 857 desktop computers during four

weeks, whole file deduplication achieves approximately three

quarters of the space savings of chunk level deduplication.

All these facts are questioning the gain brought by the most

aggressive chunking techniques in the context of cloud storage

services.

In this workshop paper, we try to explore this gap by

investigating the tradeoff between deduplication efficiency

and another key performance measure, namely throughput. In

particular, we show that the impact of optimizations focusing

on deduplication efficiency is rarely put in perspective with

throughput, suggesting that the importance of this metric tends

to be largely underestimated in current research.

In Section II, we start by describing the algorithmic basis of

most content-defined chunking algorithms found in the litera-

ture, which also serves as basis of all the chunking algorithms

we implemented for this paper. These algorithms are then

described and discussed in Section III. The main findings of

this research are presented in Section IV, which discusses the

performance of those algorithms and their respective impact

on DER and on throughput. In particular, we focus on the

performance of rolling hash functions, which are at the core of

most content-defined chunking algorithms. In this section, we

also sketch a simple optimization to reduce the negative effect

of some of these algorithms on throughput. Finally, Section V

puts our findings into perspective and discusses possible future

work.

II. CONTENT-DEFINED CHUNKING

Before delving into the details of our experimental study, we

will describe the mainstream chunking algorithm. We should

mention that, when measuring the efficiency of chunking

algorithms, the Duplicate Elimination Ratio (DER) is a key

indicator [4], [6]. It is calculated by dividing the size of the

input dataset by the size of the chunks after deduplication.

In other words, it reflects the compression achieved by using

a given deduplication technique. In the literature, algorithmic



improvements are usually justified by highlighting their effects

on this ratio.

If hashing is applied to whole files, two files that differ in

just one byte will still have different hash signatures. In order

to mitigate this issue, a trivial approach consists in splitting

files into fixed-size chunks (FSC). The main advantage of this

technique lies in the fact that it offers a very high throughput

and is easy to implement. While being successfully used

by Dropbox, this approach comes with a major drawback:

when bytes are added at the beginning of a file, all the

following chunk boundaries are shifted [2], i.e., all chunks

after the addition will have different hash sums and will

become obsolete for that file.

Because of the aforementioned FSC limitation, a much more

efficient family of algorithms for data deduplication, known

as Content-Defined Chunking (CDC), has been proposed.

In absence of further refinements, this algorithm is often

referred to as Basic Sliding Window (BSW), and is shown

in Algorithm 1. BSW takes as input a sequence of bytes,

a window size, a divisior and a boundary parameter. These

algorithms heavily rely on rolling hash functions such as the

Rabin-Karp algorithm [10]. Given a window of bytes, rolling

hash functions take into account incoming and outgoing bytes.

As illustrated in Figure 1, the idea is to create a fixed-size

sliding window (windowSize in Algorithm 1), depicted by a

black box. The sliding window slides for the whole length

Algorithm 1 Basic Sliding Window Algorithm

1: procedure BSW(bytes,windowSize,divisor,boundary)

2: boundaries←∅

3: position← 0

4: hash← 0

5: while position < length(bytes) do

6: byte← bytes[position]
7: if position < windowSize then

8: hash← updateHash(hash,byte)
9: else

10: hash← rollHash(hash,byte)

11: if position≥ windowSize−1ba and

hash mod divisor = boudary then

12: boundaries← boundaries∪{position}

13: position← position+1

14: return boundaries
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Fig. 1. Illustration of Basic Sliding Window (BSW)

of the byte sequence (line 5 in Algorithm 1). If it has not

filled a sequence of bytes equal to the windowSize parameter

(line 7 in Algorithm 1), the value of the hash function is

updated (line 8 in Algorithm 1). If the sliding window exceeds

the windowSize (line 9 in Algorithm 1), then a rolling hash

function is employed to account for outgoing bytes (line 10

in Algorithm 1). When the sliding window fills an area

equal or greater to the fixed windowSize, we check for new

content-based boundaries (lines 11 and 12 in Algorithm 1).

Now, if we repeat the same process on some other byte

sequence F ′, a modified version of F , we see that unlike FSC,

CDC algorithms can identify chunk boundaries that resist to

additions and modifications anywhere in the byte sequence. In

this paper, we focus on a subset of CDC algorithms, which

are basically variants of the BSW algorithm presented above,

while using FSC as a baseline for our evaluation.

III. RELATED WORK

Having as a basis the BSW algorithm that we just described

in the previous section, several optimizations have been pro-

posed. Muthitacharoen et al, [8], describe a variant of the BSW

algorithm that uses Two Thresholds (TT). Instead of waiting

indefinitely for a boundary match, this algorithm defines a

threshold for the maximal size of chunks. Furthermore, a

minimal threshold is also set and the chunks that are smaller

than this threshold are merged. This optimization positively

impact DER and comes with the significant advantage that

the size of the chunks will be predictable.

In [3], Eshghi et al. describe a variation over the BSW

algorithm that use Two Thresholds and Two Divisors (TTTD)

when looking for content-defined boundaries. Since BSW uses

a single divisor, the second divisor introduced by TTTD acts

as a backup. In practice, it is used for avoiding arbitrary cuts

when the maximal threshold is reached. In other words, even

when the threshold is reached, a backup boundary, also defined

on the basis of the content, will be used.

More recently, a new family of chunking algorithms based

on CDC has been proposed, which scan the input data several

times in order to improve efficiency based on DER. This is for

instance the case of the Bimodal Content-Defined Chunking

algorithm by E. Kruus et al. [4] and of the Frequency-Based

Chunking algorithm by G. Lu et al. [6]. In these algorithms,

while the efficiency in terms of DER is indeed improved

thanks to multiple passes across files, these improvements

come to the detriment of throughput.

In [1], Bobbarjung et al. propose an optimization of the

Basic Sliding Window algorithm that uses a bit mask instead

of a divisor. The underlying idea behind this optimization lies

in the replacement of the modulo operations with a bit mask. A

strong constraint comes with this optimization however, since

modulo operations are only truly equivalent to bit masks when

divisors are powers of two and hash sums are positive integers.

As a consequence, the matches found using bit masks will not

be exactly the same as the one found using modulo operations,

but the probability of the match will remain the same. This

optimization has no impact on the DER ratio but improves



the throughput of the chunking algorithm. However, apart

from [1], this last metric is often overlooked in the literature.

IV. PERFORMANCE EVALUATION

The aim of this study is to analyse two facets of dedu-

plication algorithms: Duplicate Elimination Ratio (DER) and

throughput. As mentioned in the previous section, the first met-

ric reflects the compression achieved by a chunking algorithm.

As the name suggests, DER is relative to the redundancies in

the input dataset. The results presented in [7], suggest that

in practice datasets are less redundant than most experimental

datasets. In addition, a significant part of the redundancies

can be captured with trivial deduplication algorithms. We

define the second metric, throughput, as the amount of bytes

per second that can pass through the algorithm. To evaluate

performance in terms of DER and throughput, we used the

following three different datasets.

• The first dataset is used to measure DER and consists in

the source code of 20 stable versions of the linux kernel,

from v3.0 to v3.19, that represents 9.5GB of data.1 Since

releases share most of their source code, we expect to

find a lot of redundancies in this dataset and to reach a

high compression ratio.

• The second dataset is used to measure DER and consists

in the English dump of Wikipedia that accounts for 49GB

of data once decompressed.2 Since wikipedia is well

curated, we expect to find very few redundancies in this

dataset and to reach a low compression ratio.

• The third dataset is used to measure throughput and con-

sists in a sequences of 100MB of random data. Regarding

throughput, the nature of the input dataset has no impact

since this measure only reflects the speed at which data is

consumed. The same operations are always performed by

the algorithms on the incoming and outgoing byte in order

to find boundary breakpoints. For this reason, random

data do not affect the results of the experiment and gives

the same results as real world data. Furthermore, since we

don’t want to measure the throughput of the hard-drive,

we load the dataset in-memory. This allows us to only

measure the throughput of the chunking algorithm.

In order to perform our experiments, we implemented

various CDC algorithms using Scala and the non-blocking

I/O API provided by Java.3 When measuring DER, we simply

wrote chunks and metadata directly on the hard drive and mea-

sured the size of the output data. Regarding throughput, our

performance benchmarks rely on JMH.4 Finally, we performed

our experiments using a Dell Power Edge T110 II with an Intel

Xeon CPU clocked at 3.50GHz and 16GB of RAM.

A deeper understanding of the underlying concept of CDC

algorithms is necessary to understand what impacts through-

put. Rolling Hash Functions (RHF) are at the core of most

1https://github.com/torvalds/linux
2http://burnbit.com/download/339061/enwiki 20150205 pages articles xml bz2
3We intent to release under the Apache Software Foundation License.
4http://openjdk.java.net/projects/code-tools/jmh/

CDC algorithms. So in the next section, we first analyze

the properties of RHFs. Then, on this basis, we analyze

deduplication algorithms in more details and measure their

DER as well as their throughput, in order to analyze how the

two metrics impact one another.

A. Performance of Rolling Hash Functions

Several Rolling Hash Functions (RHF) are mentioned in

the literature and may constitute good candidates for CDC

algorithms [11], [5]. We ported the following RHF in Scala: a

Randomized Rabin-Karp hash function, a Cyclic Polynomial

hash function and the custom Adler32 hash function used by

RSync simply referred to as RSync hereafter.

Configuration. In [9], Policroniades and Pratt suggest that

the size of the rolling hash windows does not have a significant

impact on DER, so we followed their recommendation of a 48

byte window. Our own performance analysis shows that this

parameter does not significantly impact the throughput of the

RHF when the window remains small. Since the Randomized

Rabin-Karp and the Cyclic Polynomials functions require lists

of random numbers, which are equal in size to the targeted

vocabulary (bytes or characters), we generated pseudo random

series of 256 integers that target the byte vocabulary. The

RSync hash function has an offset parameter that we initiated

to 0 for our experiments.

Hash Distribution. In order to compute the distribution

of the RHFs, we generated hash signatures using random
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Fig. 2. Rabin-Karp Hash Distribution
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data. Figure 2 shows the uniform distribution of the Rabin-

Karp hash function. The Cyclic Polynomial function has a

very similar uniform distribution. The RSync hash function,

is sometimes mentioned for having very good performance.

Unfortunately, as shown in Figure 3, this function comes

with a near-Gaussian distribution. Having hash signatures that

occur with different probabilities has a direct impact on the

frequency at which CDC algorithms detect boundaries. As

a result, the size of the chunks will be less predictable. By

consequence, if we consider current CDC algorithms, this RHF

should be used with caution or even disqualified. However,

we think that a smart usage of this property could leave room

for optimization by replacing some costly operations in CDC

algorithms with inexpensive ones. For example, the costly

modulo operation used in Algorithm 1 to find boundaries

could be replaced with a hash that comes out with a given

probability. In other words, instead of acting on the divisor to

alter the probability of finding a boundary, choosing a specific

boundary on the Gaussian distribution of the RSync function

could lead to the same result without the division. We intend

to further explore this idea in our future work.

Throughput. In terms of throughput, both the Random-

ized Rabin-Karp and the RSync functions perform well. On

our infrastructure, we measured fairly similar throughputs of

307MB/s for the Rabin-Karp function and 293MB/s for the

RSync function. In our context the Cyclic Polynomial Hash

function was a little slower with a throughput of 249MB/s.

These numbers tend to confirm that the Rabin-Karp hash

function is a natural choice for CDC algorithms.

B. Performance of Chunking Algorithms

Regarding deduplication algorithms, we reimplemented and

compared the following algorithms: Fixed-Sized Chunking

(FSC), Basic Sliding Window (BSW) [3], Two Thresholds

(TT) [8], [9], Two Divisors (TD) [3], Two Thresholds Two

Divisors (TTTD) [3]. We also implemented optimized versions

of these algorithms (prefixed with O) which use bit masks

instead of divisors as suggested in [1]. To our knowledge, the

effect of this optimization on the DER and more interestingly

on the throughput of CDC algorithms has not been clearly

measured in the literature. Additionally, we did not find studies

comparing the TT with the TTTD algorithms.

Configuration. In [3], Eshghi et al. use hill climbing to dis-

cover the best configuration parameters for CDC algorithms.

We base our configurations on these settings and aim at having

an average chunk size of 1KB. Figure 4 summarizes the

parameters we provided to the different algorithms. In this

configuration, D stands for the primary divisor, D′ for the

secondary divisor, T min for the minimal threshold and T max

for the maximal threshold. Some algorithms do not use all

these parameters.

Chunk Size Distribution. In order to measure the chunk size

distribution, we ran our algorithm implementations on 100Mb

of random data and collected the sizes of the resulting chunks.

Figure 5 highlights the chunk size distribution of the BSW

algorithm. Without thresholds, such an algorithm may have

to deal with corner cases, where no boundaries are found and

chunks become very large. Such cases are not ideal since more

memory may be required during the chunking process and the

storage infrastructure may have to deal with an unpredictable

chunk size. Figure 6 highlights the chunk size distribution of

the TT and the TTTD chunking algorithms. It is interesting to

see the effect of the second divisor introduced by the TTTD

chunking algorithm. All the chunks that are reaching the upper

threshold with the TT algorithm are redistributed into smaller

chunks by the backup divisor of TTTD. As we will show in the

following paragraph the second divisor significantly impacts

Algorithm D D’ Tmin Tmax

FS - - - 1024

BSW 1000 - - inf.

OBSW 1024 - - inf.

TT 1000 - 460 2800

OTT 1024 - 460 2800

TTTD 540 270 460 2800

OTTTD 512 256 460 2800

Fig. 4. CDC Configuration Parameters
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the throughput while the DER of both algorithms remains very

close. In consequence, adding uniformity to the size of the

chunks is the main advantage brought by TTTD over TT.

Duplicate Elimination Ratio. As already discussed, the

Duplicate Elimination Ratio (DER) is the widely used metric

to evaluate chunking algorithms [6], [4] and is calculated by

dividing the size of the input by the size of the chunks after

deduplication. For the sake of clarity, our figures display the

DER as labels below the histogram bars. The Y-axis uses

percentages that relate to the size of the input dataset. This

allows to easily stack and visualize the overhead introduced

by the metadata and puts DER in perspective with the size

of the input data. Regarding the Linux dataset, since it is

composed of several major versions of the Linux kernel, we

expected a high deduplication ratio. In practice, as shown

in Figure 7, such dataset really justifies the usage of CDC

algorithms in backup systems, since the size of the output is

smaller by nearly one order of magnitude. When the dataset

is versioned and contains a lot of redundancies, it really make

sense to prefer CDC over FSC or whole file deduplication.

When comparing CDC algorithms in terms of their DER,

we notice little improvement when comparing the successive

optimizations of the BSW algorithm, namely TT and TTTD.

However, as depicted here, when the size of the input dataset

is taken into account, it is surprising to note how little this gain

is. This allows us to question the meaning of the DER metric

and to recommend more meaning full metrics which put the

gain in perspective with the size of the input dataset. Regarding

the Wikipedia dataset, since it is a snapshot that comes from

a normalized database, we expected very few redundancies.

This was confirmed in practice, since we only identified

approximately 1GB of redundant data. In fact, Figure 8 shows

that, in such dataset, deduplication even comes with a small

penalty since file descriptors also need to be stored. This

confirms that the gain brought by optimisations focusing only

on DER tend to come with little benefits.

Throughput. We now focus on the throughput metrics to

highlight the cost of some optimizations that focus on DER.

The first thing to notice is that fixed-size chunking outperforms

all CDC algorithms with a throughput of more than 2GB/s.

As shown in Figure 9, with a highest throughput of approxi-

mately 130MB/s, CDC algorithms are at best 15 times worse

than fixed-size chunking when using bit mask optimizations.

Interestingly, the BSW algorithm does not perform better than

its DER optimized counterparts in terms of throughput. This

allows us to identify the positive effects of introducing min-

imal and maximal thresholds in CDC algorithms. The lower

threshold eliminates a range of bytes from the computation,

while the upper threshold reinforces this effect by increasing

the number of chunks. However, the introduction of a second

divisor by TTTD over TT comes at a significant cost which

can be mitigated by using the bit mask optimization. As

demonstrated with OTTTD and OTT, using bit masks allows to

avoid costly division operations. In consequence, it is useful to

search for configuration parameters that are slightly distanced
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from the ideal configuration settings described by Eshghi et al

in [3] but that satisfy the constraints brought by bit masks.

These results concur with the conclusion of [7]. They clearly

demonstrate that DER measures are relative to the input dataset

and should be used with a lot of caution. In practice, datasets

contain different kinds of data, which highly mitigate the

benefits brought by CDC algorithms. The throughput measures

presented here probably highlight the reason why some cloud

storage services are choosing trivial deduplication schemes.

The cost of looking for content-defined chunk boundaries is

very high since each time a byte is consumed, it produces

a hash sum which is used to identify chunk boundaries.

Consequently, CDC algorithms introduce a lot of computation

and if the deduplication process occurs on the end-user device,

this cost will have a significant impact on its autonomy and

battery life. In conclusion, it is legitimate to question costly

DER optimizations and more importance should be given to

the throughput of CDC algorithms.

V. CONCLUSION

The results presented in this paper tend to confirm the

findings of Meyer et al. described in [7]. A significant part of

the benefits brought by content-defined chunking algorithms

can be obtained with trivial deduplication techniques such

as fixed-size chunking. The results also demonstrate a new

fact: such optimizations introduce a significant computational

overhead which comes to the detriment of the throughput.

As a consequence, the benefits brought by algorithms that

focus on duplicate elimination ratio to the detriment of the

throughput can be put to the question. We show that bit

mask optimizations have a positive impact on the throughput

but this incidence remains quite limited if we consider the

throughput of a trivial fixed-size chunking algorithm. As a

consequence, we believe that more importance should be given

to the computational efficiency of content-defined chunking

algorithms.

Today, these facts limit the attractiveness of content-defined

chunking algorithms for cloud storage solutions, especially

when the deduplication process occurs on end-user devices,

which usually have limited capacities. However, if we consider

that cloud storage services will soon give access to all past

versions of a given piece of data, efficient deduplication algo-

rithms in term of duplicate elimination ratio and throughput

are necessary. Such algorithms will allow to store all changes

on the data as they occur and at a reasonable cost.

The algorithms we reimplemented constitute a good basis

for analyzing and improving the throughput of content-defined

chunking algorithms. Our goal will now consist in finding

efficient ways for improving the performance of this category

of algorithms and bring it closer to the throughput of fixed-size

chunking without impacting the duplicate elimination ratio.

Making these algorithms more efficient will probably make

them more attractive for cloud storage services and more

suitable for devices with limited capacities.
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