
MAPLIBRE-RS: TOWARD PORTABLE MAP RENDERERS

Maximilian Ammann1∗, Antoine Drabble2, Jens Ingensand2, Bertil Chapuis2

1 MapLibre project - max@maxammann.org
2 University of Applied Sciences and Arts (HES-SO/HEIG-VD), Switzerland -

(antoine.drabble, jens.ingensand, bertil.chapuis)@heig-vd.ch

Commission IV, WG IV/4

KEY WORDS: Geospatial, Map, Vector Tiles, Rust, WebGPU, WebAssembly.

ABSTRACT:

Map renderers play a crucial role in Web, desktop, and mobile applications. In this context, code portability is a common problem,
often addressed by maintaining multiple code bases: one for the Web, usually written in JavaScript, and one for desktop and mobile,
often written in C/C++. The maintenance of several code bases slows down innovation and makes evolution time-consuming. In
this paper, we review existing open-source map renderers, examine how they address this problem, and identify the downsides of
the current strategies. With a proof of concept, we demonstrate that Rust, WebAssembly, and WebGPU are now sufficiently mature
to address this problem. Our new open-source map renderer written in Rust runs on all platforms and showcases good performance.
Finally, we explain the challenges and limitations encountered while implementing a modern map renderer with these technologies.

1. INTRODUCTION

Map renderers play a crucial role in various applications de-
ployed in Web, desktop, mobile, and embedded applications.
For instance, we rely on them to travel, commute, find the best
hotels and restaurants, and locate others. Their adoption drives
innovation in various areas, such as urban planning, transporta-
tion, solar panel placement, pandemic monitoring, etc. (Biljecki
et al., 2015). Beyond digital environments, maps also get prin-
ted in books, reports, or pieces of urban furniture. Despite ma-
jor advancements in mapping solutions during the last 20 years,
there is still room for improvement. While embed maps are
already part of our everyday life, software developers still face
significant challenges when creating artifacts that use maps. For
example, these challenges include styling maps or self-hosting
geo data. In this paper, we focus on the problem of code port-
ability (i.e., the ability to use a single code base on various plat-
forms).

Code portability is a common problem in map renderers. For
instance, several map renderers maintain a JavaScript codebase
for the Web (e.g., mapbox-gl-js, maplibre-gl-js, and tangram)
and a C++ codebase for native platforms (e.g., mapbox-gl-native,
maplibre-gl-native, and tangram-es). The JavaScript codebases
allow their renderers to run in all major browsers using the
WebGL graphics API. The C++ codebases allow running on
desktop and mobile environments, servers (e.g., for headless
rendering), in cars, planes, or in embedded settings. Guaranty-
ing that these renderers behave similarly and produce the same
outputs on all these platforms is challenging and costly, and it
slows down the ability of development teams to innovate and
improve renderers.

In this paper, we present emerging solutions to the code port-
ability problem. We then review the most popular open-source
map renderers from a portability point of view. We show that
the existing codebases currently fail at producing a portable

∗ Corresponding author

map renderer in at least one area. Based on the emerging tech-
nologies identified, we study the feasibility of creating a port-
able map renderer. We present a proof-of-concept, released un-
der the terms of the MIT, that can render maps natively and
in the browser. We describe its overall architecture and high-
light the challenges we encountered while implementing it. Fi-
nally, we present our future work and explore possible amelior-
ations. Overall, this review and feasibility study gives an excit-
ing glimpse into a possible future for map renderers.

2. BACKGROUND

This section introduces fundamental concepts that explain the
rest of the paper. Firstly, we present modern portable techno-
logies that can be used natively or in a browser. Secondly, we
provide a bird’s-eye view of portable graphics APIs.

2.1 Code Portability

A code is portable when it can execute on multiple platforms.
To some extent, most programming languages are portable. They
can achieve portability with interpreters, compilers, or a com-
bination of both: interpreters translate source code into machine
code at runtime; compilers convert source code into machine
code before the execution; some interpreters compile parts of
the code just-in-time (JIT) to achieve better performance. Here,
we recall widespread approaches to code portability for Web
and native environments.

JavaScript is an interpreted language originally designed for the
Web. The V8 engine, a cross-platform interpreter and JIT com-
piler written in C++, is widely used to create portable JavaS-
cript applications that run in browsers, on servers, and in other
environments (V8, 2008). Outside of browsers, access to graph-
ics APIs is possible but difficult, which limits the use cases.
WebAssembly or Wasm is a binary instruction format that can
run in browsers with a low-performance overhead compared to
native (Haas et al., 2017). It is a popular compilation target for
low-level and high-performance programming languages like

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W1-2022
Free and Open Source Software for Geospatial (FOSS4G) 2022 – Academic Track, 22–28 August 2022, Florence, Italy

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-35-2022 | © Author(s) 2022. CC BY 4.0 License.

35

C, C++, and Rust. An increasing number of higher-level pro-
gramming languages, such as Go and C#, also compile to Wasm,
hence achieving greater portability. The Wasm text format (WAT)
is a textual representation of Wasm’s binary instruction, which
is intended to be read by humans. The C and C++ languages
have been popular among graphics programmers, as they en-
able low-level memory access. Many GIS and CAD applic-
ations, such as QGIS, ArcGIS, or AutoCAD, use these lan-
guages for performance-critical components. C and C++ can
both be compiled to Wasm with the LLVM compiler (Lattner
and Adve, 2004) and Emscripten (Zakai, 2011). For instance,
the QGIS rendering engine was successfully compiled for the
Web (Dobias, 2022). Rust is a high-level programming lan-
guage designed for safety and high performance. The project
started at Mozilla and is now developed by the Rust Founda-
tion. Its compiler targets various architectures, such as x86 and
ARM. The Rust compiler can also target Wasm with a code
generation backend based on LLVM (Rust and WebAssembly,
2018). This enables Rust applications to run natively and in
Web applications.

2.2 Graphics Portability

Graphics rendering depends significantly on the hardware and
drivers supplied by platform vendors. Here, we recall low-level
and platform-dependent APIs, portable APIs initially developed
for the Web, and higher-level APIs aimed at simplifying the task
of rendering graphics.

The OpenGL, Vulkan, DirectX, and Metal specifications handle
low-level graphics-related tasks. The Vulkan and OpenGL spe-
cifications both aim at being vendor independent and cross plat-
form. DirectX and Metal are vendor-dependant and respect-
ively target Windows and macOS. WebGL enables JavaScript
applications to render 2D and 3D graphics in all major Web
browsers (WebGL, 2011). The WebGL API is similar to OpenGL
ES, a subset of the OpenGL API targeting embedded and mo-
bile systems. As of the time of writing, browsers have adopted
versions 1 and 2 of WebGL. The WebGPU specification is con-
sidered the successor of WebGL (WebGPU, 2021). Inspired
by Vulkan, Metal, and DirectX 12, its API gives low-overhead
access to modern graphics hardware. The GPU for the Web
Community Group develops the W3C specification with en-
gineers from Apple, Microsoft, Mozilla, Google, and others.
Contrary to WebGL, which was solely designed for the Web,
WebGPU implements a standard header file (webgpu.h) that al-
lows it to work across platforms and be available in native envir-
onments. The most prominent implementations of this specific-
ation are wgpu and dawn (Wgpu, 2019, Dawn, 2017). Using
low-level APIs for rendering graphics in 2D and 3D requires
in-depth knowledge and can be challenging. Higher-level APIs
and frameworks, ranging from lightweight rendering libraries
(e.g., Skia, bgfx, Filament, etc.) to full-featured game engines
(e.g., Bevy, Unity, Unreal Engine, etc.), address this problem.
Some of these engines enable physically based rendering.

3. STATE-OF-THE-ART

TerraVision was one of the first applications to use tiles to load
terrain data at multiple resolution levels (Leclerc et al., 1995).
The tiling of geospatial data became very popular in the early
2000s due to the availability of global datasets and the emer-
gence of well-known Web mapping solutions, such as Google
Maps and OpenLayers (Haklay et al., 2008). Figure 1 depicts a
hypothetical tile scheme and some tile coordinates. Over time,

0, 0, 2

0, 1, 2

0, 2, 2

0, 3, 2

1, 0, 2

1, 1, 2

1, 2, 2

1, 3, 2

2, 0, 2

2, 1, 2

2, 2, 2

2, 3, 2

3, 0, 2

3, 1, 2

3, 2, 2

3, 3, 2

Figure 1. A multi-resolution pyramid of tiles (zoom levels 0, 1,
and 2) and tile coordinates (x, y, zoom level).

many specifications, such as the tiling scheme utilized by Open-
StreetMap (Haklay and Weber, 2008), have been established
to describe these notions. Recently, the Open Geospatial Con-
sortium (OGC) defined them more formally in the OGC TMS
standard (OGC TMS, 2019).

Raster tiles encode geospatial data with image formats, such as
TIFF or PNG. The advancements in the industry regarding the
creation and utilization of raster tile mapping systems have led
to the establishment of the OGC WMTS standard for tiled raster
services (OGC WMTS, 2010). Cloud services and government
agencies have widely adopted this standard to disseminate geo-
spatial data. WMTS offers the possibility of defining a custom
tiling scheme (e.g., with different non-regular zoom levels) and
projection systems that optimize the display of specific raster
data.

The Mapbox Vector Tile Specification has had a great success
(Mapbox Vector Tile Specification, 2014) and became a de facto
standard for vector tiles. This specification defines several as-
pects of vector tiling, such as: the format (i.e., protocol buffers);
the tiling scheme (which allows for only one coordinate sys-
tem); the simplification of input geometries snapped on a grid
(which reduces the size of the tiles but does not keep the topo-
logy); and the addressing of the tiles. The OGC recently drafted
a specification within the frame of the new OGC API standards
family that defines the tiling scheme and the utilization of dif-
ferent coordinate systems. It keeps the choice of a data format
and attributes handling open (OGC API, 2017). Most software
capable of producing vector tiles focuses on the Mapbox Vector
Tile Specification, but server-side implementations of the OGC
API Tiles Specification recently emerged (e.g., PyGeoAPI and
GeoServer).

The OGC 3D Tiles Specification defines a way to tile 3D geo-
spatial data (OGC 3D Tiles, 2019). This standard corresponds
to the Cesium 3D Tiles Specification (Cesium 3D Tiles, 2015).
The tiling scheme is irregular in this specification: it is weight-
based (e.g., the number of vertices). In other words, the extent
of one tile depends on its weight (e.g., compared to WMTS,
OGC API tiles, and MapBox vector tiles) to optimize the load-
ing of tiles. Consequently, each tile’s location needs to be com-
municated to the client and cannot be deduced automatically by
the viewport.

4. REVIEW OF MAP RENDERERS

To review map renderers exhaustively, we started by listing
them as broadly as possible based on our field knowledge. We
included renderers that: target different types of environments

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W1-2022
Free and Open Source Software for Geospatial (FOSS4G) 2022 – Academic Track, 22–28 August 2022, Florence, Italy

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-35-2022 | © Author(s) 2022. CC BY 4.0 License.

36

Platforms Input formats

GitHub Repository W
eb

L
in

ux

W
in

do
w

s

m
ac

O
S

iO
S

A
nd

ro
id

R
as

te
r

til
es

Ve
ct

or
til

es

O
th

er

3D
m

ap

Lang License Entity Year
a-b-street/abstreet ✔ ✔ ✔ ✔ ✔ Rust Apache-2.0 A/B Street 2018 §
aliflux/vectortilerenderer ✔ ✔ ✔ ✔ ✔ ✔ ✔ C# MIT Individual 2018 §
cartodb/mobile-sdk ✔ ✔ ✔ ✔ ✔ ✔ ✔ C/C++ BSD-3 CARTO 2016 §
cesiumgs/cesium ✔ ✔ ✔ ✔ JS Apache-2.0 Cesium 2012 §
dfyz/osm-renderer ✔ ✔ ✔ ✔ Rust MIT Individual 2018 §
enzet/map-machine ✔ ✔ ✔ ✔ Python MIT Individual 2015 §
framstag/libosmscout ✔ ✔ ✔ ✔ ✔ ✔ C++ LGPL Individual 2015 §
geoserver/geoserver ✔ ✔ ✔ ✔ ✔ ✔ Java GPL-2.0 GeoServer 2001 ¯
heremaps/harp.gl ✔ ✔ ✔ ✔ ✔ TS Apache-2.0 HERE 2018 §
hijiangtao/glmaps ✔ ✔ ✔ ✔ JS MIT Individual 2019 §
itowns/itowns ✔ ✔ ✔ ✔ ✔ JS Cecill-B/MIT iTowns 2015 §
josm/josm ✔ ✔ ✔ ✔ ✔ ✔ Java GPL-2.0/3.0 OSM DE 2010 §
karimnaaji/vectiler ✔ ✔ ✔ ✔ ✔ C++ MIT Individual 2015 §
leaflet/leaflet ✔ ✔ ✔ ✔ JS BSD-2 Leaflet 2010 §
mapbox/mapbox-gl-js ✔ ✔ ✔ ✔ ✔ JS Source-avail. Mapbox 2013 §
maplibre/maplibre-gl-js ✔ ✔ ✔ ✔ ✔ JS BSD-3 MapLibre 2020 §
maplibre/mablibre-gl-native ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ C++ BSD-2 MapLibre 2020 §
mapnik/mapnik ✔ ✔ ✔ ✔ ✔ C++ LGPL-2.1 Community 2011 §
mapserver/mapserver ✔ ✔ ✔ ✔ ✔ ✔ C/C++ MIT OSGeo 1994 ¯
mapsforge/mapsforge ✔ ✔ ✔ ✔ ✔ Java LGPL-3.0 Community 2014 §
mapsme/omim ✔ ✔ ✔ ✔ ✔ ✔ C++ Apache-2.0 Maps.me 2015 §
mousebird/whirlyglobe ✔ ✔ ✔ ✔ ✔ ✔ C++ Apache-2.0 Mousebird 2012 §
nasa-ammos/3dtilesrendererjs ✔ ✔ ✔ ✔ ✔ JS Apache-2.0 NASA 2020 §
nils-hamel/eratosthene-suite ✔ ✔ ✔ C GPL-3.0 Individual 2017 §
openlayers/openlayers ✔ ✔ ✔ ✔ JS BSD-2 OpenLayers 2006 ¯
openmobilemaps/maps-core ✔ ✔ ✔ ✔ C++ MPL-2.0 Ubique 2021 §
orbisgis/orbismap ✔ ✔ ✔ ✔ Java GPL-3.0 OrbisGIS 2017 §
organicmaps/organicmaps ✔ ✔ ✔ ✔ ✔ ✔ C++ Apache-2.0 Organic Maps 2020 §
potree/potree ✔ ✔ ✔ JS BSD-2 Potree 2012 §
felixpalmer/procedural-gl-js ✔ ✔ ✔ ✔ JS MPL-2.0 Individual 2020 §
protomaps/protomaps.js ✔ ✔ ✔ ✔ TS BSD-3 Protomaps 2021 §
qgis/qgis ✔ ✔ ✔ ✔ ✔ ✔ ✔ C++ GPL-2.0 QGIS 2002 ¯
tangrams/tangram ✔ ✔ ✔ ✔ ✔ JS MIT Mapzen 2013 §
tangrams/tangram-es ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ C++ MIT Mapzen 2014 §
tordanik/osm2world ✔ ✔ ✔ ✔ ✔ Java LGPL-3.0 Individual 2012 §
tumic0/qtpbfimageplugin ✔ ✔ ✔ ✔ ✔ ✔ ✔ C++ LGPL-3.0 Individual 2018 §
visgl/deck.gl ✔ ✔ ✔ ✔ ✔ JS MIT Vis.gl 2015 §

Table 1. Review of open-source and source-available map renderers.

(e.g., desktop computers, browsers, etc.); run on servers (i.e.,
they may eventually run in the browser thanks to Wasm); are
written with a high-level programming language (i.e., it is often
justified to prioritize user experience over portability); support
different data formats (e.g., raster tile, vector tile, etc.); are part
of a greater feature set (e.g., GIS application, editor, etc.). We
then expanded our list using online lists and search keywords,
which allowed us to find map renderers implemented in various
programming languages (e.g., C#, Python, Kotlin, Java, etc.).
Finally, we used the following criteria to filter our list and re-
duce it to a reasonable size: updated during the last two years;
aimed at rendering navigable world maps; not dependent on
a full-featured game engine (e.g., Unreal Engine, Unity, etc.);
open-source or source-available. We apologize if we missed
some important map renderers during our selection process, or
if we miss-classified some of their features. Nevertheless, we
believe that the resulting list gives an accurate picture of the
open-source and source-available map renderers available.

For each map renderer, we gathered the following information:
the platforms (i.e., if it runs on the Web, Linux, Windows, ma-
cOS, iOS, or Android); the supported formats (i.e., if it can dis-
play raster tiles, vector tiles, or other formats); the ability of the
renderer to display a 3D map; the main programming language
used to develop the renderer; the license used (i.e., whether it is
open-source or source-available); the entity behind the develop-
ment of the project (i.e., company, foundation, individual, etc.);
the year of inception observed in the GitHub repository (e.g.,

the year of the first commit), or on Wikipedia.

Table 1 summarizes the information we collected, and we make
the following observations. Firstly, we notice that none of the
reviewed open-source map renderers achieve Web and native
portability. Some of them, including the QGIS rendering en-
gine, experimented with Wasm and demonstrated that it is pos-
sible to port a native renderer to the Web. However, none of
these initiatives has been massively adopted by end-users yet.
As of the time of writing, Google Earth and CartoType are
the only notable closed-source map renderers written in C++
that achieve portability with Wasm (Beck and Mears, 2020,
Asher, 2022). We expect many map renderers to follow in their
footsteps soon. Secondly, we observe that JavaScript is the
most popular language for renderers targeting the Web. Sim-
ilarly, C++ is the most popular language for native environ-
ments. Several entities (e.g., Mapbox, MapLibre, and Tangram)
maintain compatible JavaScript and C++ codebases to target the
Web and native environments. Thanks to the ability to compile
C++ to Wasm, many JavaScript renderers (e.g., maplibre-gl-
js) may eventually be replaced by their C++ counterparts (e.g.,
maplibre-gl-native). However, this approach may produce large
Wasm binaries due to legacy code and dependencies. Finally,
we notice that map renderers tend to support more formats as
they get more mature. For instance, raster tiles, commonly used
in 2D maps, can be loaded in 3D globes. Similarly, glTF ob-
jects, commonly used in 3D globes, can now be displayed in
renderers that were initially intended to display 2D maps.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W1-2022
Free and Open Source Software for Geospatial (FOSS4G) 2022 – Academic Track, 22–28 August 2022, Florence, Italy

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-35-2022 | © Author(s) 2022. CC BY 4.0 License.

37

https://github.com/a-b-street/abstreet
https://github.com/aliflux/vectortilerenderer
https://github.com/cartodb/mobile-sdk
https://github.com/cesiumgs/cesium
https://github.com/dfyz/osm-renderer
https://github.com/enzet/map-machine
https://github.com/framstag/libosmscout
https://github.com/geoserver/geoserver
https://github.com/heremaps/harp.gl
https://github.com/hijiangtao/glmaps
https://github.com/itowns/itowns
https://github.com/josm/josm
https://github.com/karimnaaji/vectiler
https://github.com/leaflet/leaflet
https://github.com/mapbox/mapbox-gl-js
https://github.com/maplibre/maplibre-gl-js
https://github.com/maplibre/maplibre-gl-native
https://github.com/mapnik/mapnik
https://github.com/mapserver/mapserver
https://github.com/mapsforge/mapsforge
https://github.com/mapsme/omim
https://github.com/mousebird/whirlyglobe
https://github.com/nasa-ammos/3dtilesrendererjs
https://github.com/nils-hamel/eratosthene-suite
https://github.com/openlayers/openlayers
https://github.com/openmobilemaps/maps-core
https://github.com/orbisgis/orbismap
https://github.com/organicmaps/organicmaps
https://github.com/potree/potree
https://github.com/felixpalmer/procedural-gl-js
https://github.com/protomaps/protomaps.js
https://github.com/qgis/qgis
https://github.com/tangrams/tangram
https://github.com/tangrams/tangram-es
https://github.com/tordanik/osm2world
https://github.com/tumic0/qtpbfimageplugin
https://github.com/visgl/deck.gl

5. PROOF OF CONCEPT

In this section, we present maplibre-rs, a new portable map ren-
dering library1. We lay out its overall architecture and design.
We describe its features and the challenges that we foresee in re-
leasing a full-featured portable map renderer written with Rust.
Finally, we describe some issues encountered while building
and packaging it for different targets. This project was released
on GitHub in the MapLibre organization and published with the
MIT license.

5.1 Rendering Architecture

Rust, Wasm, WebGPU, and wgpu provide unparalleled port-
ability while guaranteeing good performance on all supported
platforms. WebGPU represents a novel and modern way to
define a Web-first, cross-platform graphics API. Compared to
its predecessor, WebGL, standalone runtimes that support WebGPU
are available from the start. Figure 2 depicts the overall archi-
tecture of maplibre-rs and shows how this technology is lever-
aged to create a portable map renderer. The maplibre-rs lib-
rary depends on wgpu; furthermore, a cross-platform graph-
ics API written in Rust is also used by Firefox internally as a
WebGPU implementation. Rust applications integrating wgpu
can compile to native targets, in which case, a hardware abstrac-
tion layer (HAL) renders graphics using low-level APIs, like
Vulkan, Metal, DirectX, or OpenGL. If maplibre-rs is compiled
to a Wasm binary for the Web target, either WebGL or WebGPU
can be used to render graphics.

Because WebGL is only available in Web browsers, it cannot
be used on a non-Web-based Wasm runtime. The Deno runtime
for JavaScript, TypeScript, and Wasm currently supports the
WebGPU specification in a headless mode. WebGL and WebGPU
implementations can differ between browsers. While Firefox
uses wgpu, Chrome ships with Dawn, a different implementa-
tion of WebGPU (Wgpu, 2019, Dawn, 2017).

5.2 Design

Several requirements shaped the design of maplibre-rs. The
library must be: (i) able to run across platforms, (ii) interact-
ive, (iii) performant, (iv) extensible, (v) modern, and (vi) light-
weight.

The cross-platform support is addressed by the architecture in-
troduced in Section 5.1. By leveraging the WebGPU graphics
API and the Rust programming language, it is possible to reach
high performance and make the map renderer highly interactive.
This means that users can interact with the map in real-time.
Because the Rust programming language is a systems program-
ming language, low-level control over the memory is possible.
Extensibility is achieved by keeping the design of maplibre-rs
modular, as shown in Figure 3. Building on top of modern Rust
libraries and APIs makes it possible to keep maplibre-rs light-
weight. In practice, we never had to depend on C/C++ libraries.
For instance, pure Rust implementations were available for TLS
or PNG decoding. This makes the build process and the result-
ing binary self-contained and stand-alone. In the following, we
introduce the core modules of maplibre-rs.

5.2.1 schedule A schedule is responsible for preparing new
frames, handling input, requesting data, preparing GPU resources,
and queuing up render commands. These steps are encapsulated

1 https://github.com/maplibre/maplibre-rs

maplibre-rs

wasm target

wgpu

Metal

Hardware Abstraction Layer (HAL)

DirectX

Web-based app
(e.g. chrome, firefox,

safari, etc.)

Non-web app
(e.g. deno)

Vulkan OpenGL

wasm target

Native
Rust app

(on linux, windows, macos, ios,
android, etc.)

native targets

WebGPU

OS Drivers

WebGL

HAL

Figure 2. Rendering architecture of maplibre-rs. The library is
depicted as a green box. Components of the wgpu project are

shown in blue. Target environments are colored in violet.
Low-level and Web graphics specifications are shown in red.

The underlying OS-dependant drivers are pictured at the bottom.

in stages, which consist of executable tasks with a run method.
Performance optimizations can be performed in-between stages.
The stages are executed by the schedule for each frame. This
architecture enables maplibre-rs to be extensible and yet per-
formant by allowing optimizations.

5.2.2 data pipeline A data pipeline is used to describe how
data is fetched, transformed, and cached. Expensive operations
should not block the thread that is responsible for rendering the
map; therefore, the steps of a pipeline are executed asynchron-
ously. Some steps, such as fetching data from disk or remote
servers, are common to most pipelines. Some other steps are
dependent on the format. For instance, while vector tiles re-
quire a tessellation step that triangulates geometric data, raster
tiles need an image decoding step.

5.2.3 renderer A renderer takes input data and displays it
on the screen. In the case of wgpu, resources like buffers, tex-
tures, and shaders need to be initialized, and render commands
have to be prepared. In order to design an extensible and per-
formant renderer, an abstraction must be introduced that allows
implementing various rendering techniques (Williams, 1978,
Schneider and Klein, 2007, Trapp and Dollner, 2019). The ren-
derer of maplibre-rs uses a render graph in order to resolve de-
pendencies between different render passes (O’Donnell, 2017).
This rendering architecture creates an abstraction on top of wgpu.
Before a render pass is executed, GPU-allocated resources need
to be prepared, and render commands need to be queued. The
resources are resolved during the render pass, and the com-
mands are executed. We did not build on top of a high-level
rendering engine, because we wanted to be able to optimize the
renderer. By not using an off-the-shelf render engine, we were
able to create a domain-specific renderer, which also fulfills the
requirement of being lightweight. Usually, existing render en-
gines come with many dependencies.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W1-2022
Free and Open Source Software for Geospatial (FOSS4G) 2022 – Academic Track, 22–28 August 2022, Florence, Italy

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-35-2022 | © Author(s) 2022. CC BY 4.0 License.

38

https://github.com/maplibre/maplibre-rs

schedule

window

inputrendererdata pipeline

maplibre

android appleweb

...

drives

feeds

usesuses

platform-specific modules

stagestage

drives

drives

stage

processes

initializes

m
aplibre-w

init

event loop
drives

Figure 3. Design of maplibre-rs. The maplibre-rs library
consists of a core component, which is called maplibre. The
schedule feature drives multiple stages, which have different

responsibilities like preparing data, rendering data, or handling
inputs. The maplibre-winit component implements the

management of an event loop, inputs, and windows. It is based
on the popular winit library. In order to host platform-specific

code, several platform-specific modules are available.

5.2.4 window and event loop The window module prepares
the surface for the renderer in order to draw the map. This can
either be an entire window or just a portion of a window. On
mobile platforms, maps usually need to be displayed on a por-
tion of the screen. In the case of headless rendering, no window
is required. It renders on a GPU-allocated texture instead. We
introduced an abstraction to support these different render tar-
gets and use cases. Depending on the use case and the platform
that provides the surface or window, a different event loop im-
plementation is required. On Web-based platforms, the event
loop is driven by a method called requestAnimationFrame()

(HTML Standard, 2022). This API requests a new frame from
maplibre-rs depending on the refresh rate of the user’s display.
If maplibre-rs is used headlessly without a proper window, the
event loop can be implemented differently based on the required
use case.

5.2.5 input Different platforms offer different methods of
interacting with maps. For example, in desktop environments,
the map can be controlled with a pointing device, such as a
mouse. On mobile platforms, touch inputs with gestures are
used. At the time of writing, maplibre-rs processes raw inputs
from the underlying platform: keyboard inputs, mouse inputs,
and cursor positions. While this is a simple solution, it lags in
terms of user experience: gestures may work slightly differently
depending on the device. For instance, the double-tap gesture
is implemented differently on iOS and Android. Therefore, a
future version of this module will use platform-specific SDKs
to process gestures.

5.2.6 platform specific modules Each platform (e.g., Web,
Android, iOS, macOS) targeted by maplibre-rs requires slightly
different implementations for rendering or scheduling asynchron-
ous tasks. For example, we use a different asynchronous runtime
on the Web and in native targets. In order to separate concerns,
each target platform use a separate module that implemented
platform-specific code.

Figure 4. A map rendered using maplibre-rs. Text rendering is
not included as it is not yet fully integrated in the renderer.

5.3 Features

This section describes the main features that we evaluated in our
proof-of-concept. They were not all implemented in the main
branch of maplibre-rs, but their feasibility was demonstrated
with the architecture described in Section 5.1. Figure 4 displays
a screenshot of maplibre-rs running on macOS.

5.3.1 Vector tile tessellation The Mapbox Vector Tile Spe-
cification describes an efficient encoding format for geographic
vector data (Mapbox Vector Tile Specification, 2014). A vec-
tor tile usually contains multiple layers. Each layer consists of
a name and a list of features, which belong semantically to-
gether (e.g., buildings, roads, etc.). Each feature contains a
geometry that can either be a point, a line-string, or a poly-
gon. The containment and direction (e.g., clockwise or counter-
clockwise) of polygon rings are used to draw multi-polygons
with holes. Additionally, each feature contains tag references
(i.e., a dictionary-like structure is used to store tag values and
avoid redundancy). Using a tessellation algorithm, we convert
the 2D geometries into a set of triangles, called a mesh, that can
then be transferred to the GPU for rendering. In maplibre-rs, we
use Lyon, a powerful and portable tessellation library written in
Rust (Silva, 2016).

5.3.2 Vector tile styling The Mapbox Style Specification
defines the visual appearance of a map (Mapbox Style Spe-
cification, 2014). This is a complex specification that covers
many aspects, such as: the main properties associated with the
map (e.g., version, name, metadata, etc.); the configuration of
the viewer when opening the map (e.g., its center, zoom, pitch,
and bearing); the definition of data sources (e.g., vector, raster,
GeoJSON, etc.); the layers and styling rules applied to the data
(e.g., fill colors, outline colors, legends, icons, etc.). Expres-
sions play an essential role in the specification. They allow
defining rich formulas for computing properties dynamically
based on feature properties and current zoom. With maplibre-
rs, it is possible to define simple styles. However, given its
extent, we do not yet support the full Mapbox Style Specific-
ation. In the future, we plan to improve the support for it to
load style files dynamically and allow the user to update them
interactively. Advanced styling capabilities enable exciting use
cases, such as: color-blindness and night modes support; con-
textual mapping (i.e., the ability to style the map depending on
a context).

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W1-2022
Free and Open Source Software for Geospatial (FOSS4G) 2022 – Academic Track, 22–28 August 2022, Florence, Italy

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-35-2022 | © Author(s) 2022. CC BY 4.0 License.

39

5.3.3 Coordinate systems and tile matrix The maplibre-rs
library currently supports the Web Mercator projection and a
quad-tree tile structure where each zone of a tile is divided into
four children. This approach (also adopted by other render-
ers) drastically simplifies the development and allows for effi-
cient visualizations (i.e., the data is not reprojected before being
displayed). However, this approach also has disadvantages, as
some data sets are not available in the Web Mercator projec-
tion. Furthermore, it limits the number of use cases, as specific
coordinate systems may be required for advanced types of util-
ization like the land registry or military applications. In the ex-
isting WMTS standard, as well as in the future OGC-API Tiles
standard, it is possible to define a custom tile matrix (i.e., de-
termining custom zoom levels and custom coordinate systems)
(OGC WMTS, 2010, OGC API, 2017). Therefore, we intend
to support other coordinate systems and custom tile matrices in
the long term.

5.3.4 Portable text rendering During the design and de-
velopment of maplibre-rs, we considered several approaches
for rendering text on a map. While Web-based renderers can
theoretically use the canvas API to display text, it is unavail-
able on native targets, and its performance may vary between
browsers (HTML Standard, 2022). Therefore, it is not an op-
tion for maplibre-rs. Traditionally, bitmap fonts are used to
render text. Modern font formats feature vector glyphs consist-
ing of quadratic or cubic Bézier curves. In contrast to bitmap
fonts, vector fonts require a rasterization step. Bitmap fonts
are resolution-dependent, whereas vector fonts can be rendered
independently of the resolution. Being independent of the res-
olution is essential because fonts should be clear and sharp re-
gardless of their size. Rasterizing vector fonts is a computing-
intensive task. Therefore, a new approach based on signed dis-
tance fields was introduced in 2007 (Green, 2007). This ap-
proach simplifies the rasterization and makes it independent of
the resolution. It also works for simple glyphs but yields arti-
facts when rendering complex glyphs at a high resolution. More
recent approaches rasterize Bézier curves directly on the GPU
(Dobbie, 2016, Lengyel, 2017). Lengyel’s approach is patented
and incompatible with an open-source project (Lengyel, 2017).
A more straightforward yet efficient approach creates a tessel-
lated mesh for each glyph and makes the edges on the GPU
more smooth (Wallace, 2016). The maplibre-rs project imple-
ments this method as well as signed distance field rendering as
a proof-of-concept.

5.3.5 Portable networking The interface for networking is
different in Web browsers and operating systems. Operating
systems like Android, iOS, macOS, Linux, or Windows provide
a feature-rich and low-level API for sending and receiving data
over the internet protocol. Browsers only offer a limited API de-
signed around Web primitives. We created a uniform interface
to download vector tiles to address this issue. This interface se-
lects the proper implementation at compile time depending on
the targeted architecture. For the Web platform, we use bind-
ings provided by wasm-bindgen. (Rust and WebAssembly,
2018). When running natively in an operating system, we use
the reqwest crate. Depending on the operating system, reqwest
simplifies the portability problem with different implementa-
tions of TLS. For Linux, macOS, iOS, and Windows, reqwest
uses OpenSSL. Because we cross-compile for Android, we use
the rustls implementation to simplify compilation.

5.3.6 Geometry extrusion The Vector Tile Specification can
include tags alongside 2D geometries. Depending on the data-
set used to create the vector tiles, these tags convey meaning in

(a) building:height (b) roof:shape

Figure 5. Extrusion based on OpenStreetMap attributes.

the third dimension, and we can infer 3D information from it.
As illustrated in Figure 5, the building:height and roof:shape
attributes are used in OpenStreetMap to respectively describe
the height of buildings and the shape of rooftops. We experi-
mented with a simple extrusion approach to create 3D objects:
we took a 2D polygon, copied it further along its normal axis,
and filled the sides with new faces. A more advanced approach
may take roof shapes into account in the future. Additional
properties, such as wall materials and facade colors, may also
be used. Extrusion can also be applied to other 2D objects, such
as roads, trees, railway bridges, etc.

5.3.7 Headless mode The maplibre-rs library can be oper-
ated in headless mode. This means that instead of rendering the
map onto a window or surface, the map is rendered onto an in-
memory texture, which can then be transferred to the CPU and
written to the disk as a raster file (e.g., PNG). In the future, we
will improve how we handle the particularities of the headless
mode. For instance, a common use case consists of efficiently
transforming vector tiles into raster tiles. In this use case, the
viewport should load a single tile from the memory instead of
loading several tiles from the disk or network.

5.4 Web Platform Limitations

During the development of maplibre-rs, we encountered several
Web platform limitations. These limitations represent barriers
that specification designers and browser manufacturers deliber-
ately impose. The design of maplibre-rs carefully takes them
into account. While some of these limitations are temporary
because of missing features, most are permanent.

5.4.1 Raster tile decoding Raster tiles consist of image data
encoded in a specific format. While a decoder can be imple-
mented in pure Rust, state-of-the-art implementations for de-
coders are usually written in C/C++. Therefore, it is beneficial
to use the image decoding API of the browser, which converts
compressed images to bitmaps. Unfortunately, the implement-
ation of WebGPU available in Firefox is not yet able to upload
these bitmaps as a texture to the GPU (Johns, 2021). It is only
a matter of time until this feature gets supported.

5.4.2 Multi-processing and multi-threading Parallelism is
an important aspect of rendering engines. Computing-intensive
work should not be done in the rendering thread, which is ex-
pected to stay interactive. Instead, work should be offloaded
to a separate thread or process that runs asynchronously to the
rendering thread. While operating systems provide threads and
processes as multi-core primitives, Web browsers only provide
WebWorkers (HTML Standard, 2022). WebWorkers behave
like lightweight processes that allow message passing through
a channel. Therefore, WebWorkers follow the multi-processing
paradigm. Recently, a new way of communication and syn-
chronization between these workers has been established. Web-
Workers can share memory via the SharedArrayBuffer API

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W1-2022
Free and Open Source Software for Geospatial (FOSS4G) 2022 – Academic Track, 22–28 August 2022, Florence, Italy

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-35-2022 | © Author(s) 2022. CC BY 4.0 License.

40

(ECMAScript Language Specification, 2022). Using this shared
memory is especially interesting when combined with Wasm,
as the Rust standard library offers compatible synchronization
primitives and atomic operations. Sharing memory lifts Web-
Workers from following the multi-processing paradigm to the
multi-threading paradigm. WebWorkers can synchronize us-
ing mutexes, semaphores, or barriers. Unfortunately, the us-
age of shared memory was restricted with the disclosure of the
Spectre vulnerabilities in 2018 (Kocher et al., 2019). Since
then, browsers have required users of SharedArrayBuffer to
opt-in to cross-origin isolation, which would limit the ability to
integrate maplibre-rs in third-party websites. In maplibre-rs, we
provide a uniform task scheduling API, which allows the exe-
cution of asynchronous tasks independently of the environment.
While using shared memory offers performance and simplicity
benefits, we have to implement a fallback for non-cross-origin
isolated websites in the future.

5.4.3 Wasm Memory Management The practical implica-
tions of memory management in Wasm are far-reaching. Firstly,
the design of Wasm does not guarantee the success of initial
or future memory allocations. The implementations of Wasm
available in browsers behave differently when specifying the
initially required memory and when growing the memory re-
quirement (Wasm Needs a Better Memory Management Story
(#1397), 2021). For instance, some of them require developers
to pre-allocate the maximum amount of memory, while oth-
ers pre-allocate little memory and grow it dynamically over
time. This behavior may also differ in mobile and desktop
environments. Secondly, Wasm does not offer a way to deal-
locate memory and does not support virtual memory, making
memory fragmentation more likely. Therefore, developers of
Wasm applications need to keep these facts in mind and po-
tentially use custom memory allocators. Thirdly, when using
shared memory in a multi-threading context, there is no way to
grow the memory, and the developer must estimate the max-
imum memory consumption. In the context of maplibre-rs, we
have not yet faced these memory-related issues, because our
memory requirements are low.

5.5 Library Packaging

A target is an environment, typically characterized by a CPU
architecture and an operating system, in which maplibre-rs can
be used. The major challenge when supporting different tar-
gets is to provide developer-friendly libraries. For each tar-
get, a library needs to be created to link the maplibre-rs binary
distribution and cross-language boundaries with bindings (e.g.,
JNI bindings on Android) and simplify its usage with target-
specific code. For instance, the Android, iOS, and Web targets,
respectively, require Kotlin, Swift, and JavaScript libraries. The
maplibre-rs project uses CI/CD pipelines in order to test, com-
pile, package, and distribute target-specific binaries. This en-
sures that the binaries stayed compatible with every target and
that downstream projects could benefit from fixes and new fea-
tures early. The maplibre-rs binaries are linked either statically
or dynamically by target-specific libraries. Static linking typ-
ically happens during the compilation, whereas dynamic link-
ing happens when the binary distribution is dynamically loaded
at runtime. In a system-level language, such as C++ or Rust,
maplibre-rs can be linked statically or dynamically. In higher-
level languages, such as Kotlin or JavaScript, maplibre-rs has
to be loaded dynamically. At the time of writing, our proof-of-
concept has a binary distribution for all major targets as well
as experimental bindings. In the following paragraphs, we de-
scribe the status of several targets.

5.5.1 Web Package EcmaScript modules can be used to pack-
age and distribute libraries for the Web (ECMAScript Language
Specification, 2022). The maplibre-rs library provides a Wasm
binary with JavaScript and TypeScript wrappers that load the
Wasm binary, initiate WebWorkers, and render the output to an
HTML canvas (HTML Standard, 2022). The Wasm binary of
maplibre-rs weighs around one megabyte, and it weighs half a
megabyte after compression without further optimization. As a
comparison, MapLibre GL JS v1.15.2 weighs 706KB (191KB
after compression). Although it is bigger than its JavaScript
counterpart, maplibre-rs remains Web-friendly (i.e., lightweight
to load and easy to cache). Support for Web frameworks like
Angular or ReactJS can be added by building on top of the Web
library target.

5.5.2 Android SDK Android libraries are distributed as AAR
files. We use a Gradle project with plugins for the Android SDK
and NDK to package an Android library. A further Gradle plu-
gin simplifies the creation of a dynamic library from the Rust
crate. The binary distribution of maplibre-rs is packaged in an
AAR file, so it can be dynamically loaded at runtime by the
Java virtual machine.

5.5.3 iOS and macOS SDKs We provide a XCode project
for iOS and macOS application developers. The XCode project
compiles the Rust crate and bundles static libraries for different
architectures.

6. CONCLUSION AND FUTURE WORK

In this paper, we recalled some of the challenges associated
with code portability and presented modern solutions to this
problem. Our review showed that only a few map renderers
successfully leverage Wasm to address code portability with a
single code base. Our feasibility study introduced maplibre-
rs, a new open-source map renderer that uses Rust, Wasm, and
wgpu to achieve portability on all major platforms. The design
of this renderer demonstrates that writing a cross-platform and
feature-complete map renderer in Rust is feasible despite a few
known limitations. Therefore, we are confident that this eco-
system will play an essential role in accelerating innovation in
map renderers in the future. A pitfall that may affect maplibre-
rs is the burden of legacy: innovation often requires selectively
ignoring prior work. For instance, Mapbox and Cesium both
introduced specifications to address the challenges associated
with the visualization of spatial data in the browser (i.e., vec-
tor tiles, 3D tiles). As the industry heads toward 3D maps, es-
sential questions to ask are: should maplibre-rs reach feature
parity with maplibre-js and maplibre-native; should maplibre-
rs selectively ignore some parts of its legacy? The answers to
these questions will impact our future work.

7. ACKNOWLEDGMENTS

We would like to thank (in no particular order) Mapbox for
revolutionizing the state-of-the-art of interactive maps, Fabian
Wildgrube for researching text rendering possibilities, Brandon
Liu and Pirmin Kalberer for early feedback on the project, Luke
Seelenbinder for design feedback and contributing an existing
codebase, Yuri Astrakhan and the MapLibre organization for
hosting the maplibre-rs project, and the open-source community
for its contributions to maplibre-rs.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W1-2022
Free and Open Source Software for Geospatial (FOSS4G) 2022 – Academic Track, 22–28 August 2022, Florence, Italy

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-35-2022 | © Author(s) 2022. CC BY 4.0 License.

41

REFERENCES

Asher, G., 2022. CartoType. https://www.cartotype.com/. Vis-
ited on 2022-06-01.

Beck, J., Mears, J., 2020. Google Earth comes
to more browsers, thanks to WebAssembly.
https://medium.com/google-earth/google-earth-comes-to-
more-browsers-thanks-to-webassembly-1877d95810d6.
Visited on 2022-06-01.

Biljecki, F., Stoter, J., Ledoux, H., Zlatanova, S., Çöltekin, A.,
2015. Applications of 3D City Models: State of the Art Review.
International Archives of the Photogrammetry, Remote Sensing
and Spatial Information Sciences (ISPRS), 2842–2889.

Cesium 3D Tiles, 2015. https://github.com/CesiumGS/3d-tiles.
Visited on 2022-06-01.

Dawn, 2017. https://dawn.googlesource.com/dawn. Visited on
2022-06-01.

Dobbie, W., 2016. GPU text rendering with vector textures.
https://wdobbie.com/post/gpu-text-rendering-with-vector-
textures/. Visited on 2022-06-01.

Dobias, M., 2022. QGIS and WebAssembly.
https://lists.osgeo.org/pipermail/qgis-developer/2022-
March/064589.html. Visited on 2022-06-01.

ECMAScript Language Specification, 2022. ht-
tps://tc39.es/ecma262/. Visited on 2022-06-01.

Green, C., 2007. Improved alpha-tested magnification for vec-
tor textures and special effects. Special Interest Group on Com-
puter Graphics (SIGGRAPH), ACM, San Diego, California, 9.

Haas, A., Rossberg, A., Schuff, D. L., Titzer, B. L., Holman,
M., Gohman, D., Wagner, L., Zakai, A., Bastien, J., 2017.
Bringing the web up to speed with WebAssembly. Proc. of the
Conference on Programming Language Design and Implement-
ation (PLDI), ACM, New York, NY, USA, 185–200.

Haklay, M., Singleton, A., Parker, C., 2008. Web Mapping
2.0: The Neogeography of the GeoWeb. Geography Compass,
2011–2039.

Haklay, M., Weber, P., 2008. OpenStreetMap: User-Generated
Street Maps. Pervasive Computing, 12–18.

HTML Standard, 2022. https://html.spec.whatwg.org/. Visited
on 2022-06-01.

Johns, B., 2021. WebGPU , <canvas>, and <video>
texture best practices. https://toji.github.io/webgpu-best-
practices/img-textures.html. Visited on 2022-06-01.

Kocher, P., Horn, J., Fogh, A., Genkin, D., Gruss, D., Haas, W.,
Hamburg, M., Lipp, M., Mangard, S., Prescher, T., Schwarz,
M., Yarom, Y., 2019. Spectre Attacks: Exploiting Speculat-
ive Execution. Proc. of the Symposium on Security and Privacy
(SP), IEEE, San Francisco, CA, USA, 1–19.

Lattner, C., Adve, V., 2004. LLVM: A compilation framework
for lifelong program analysis amp; transformation. Proc. of the
International Symposium on Code Generation and Optimiza-
tion (CGO), IEEE, 75–86.

Leclerc, Y. G., Jr, S. Q. L., Center, A., 1995. TerraVision: A
Terrain Visualization System. SRI International, 20.

Lengyel, E., 2017. GPU-Centered Font Rendering Directly
from Glyph Outlines. Journal of Computer Graphics Tech-
niques, 17.

Mapbox Style Specification, 2014.
https://docs.mapbox.com/mapbox-gl-js/style-spec/. Visited
on 2022-06-01.

Mapbox Vector Tile Specification, 2014.
https://github.com/mapbox/vector-tile-spec. Visited on 2022-
06-01.

O’Donnell, Y., 2017. FrameGraph: Ex-
tensible Rendering Architecture in Frostbite.
https://www.gdcvault.com/play/1024612/FrameGraph-
Extensible-Rendering-Architecture-in. Visited on 2022-06-01.

OGC 3D Tiles, 2019. https://www.ogc.org/standards/3DTiles.
Visited on 2022-06-01.

OGC API, 2017. https://ogcapi.ogc.org/. Visited on 2022-06-
01.

OGC TMS, 2019. https://www.ogc.org/standards/tms. Visited
on 2022-06-01.

OGC WMTS, 2010. https://www.ogc.org/standards/wmts. Vis-
ited on 2022-06-01.

Rust and WebAssembly, 2018. ht-
tps://rustwasm.github.io/docs/book/. Visited on 2022-06-01.

Schneider, M., Klein, R., 2007. Efficient and Accurate Render-
ing of Vector Data on Virtual Landscapes. International Confer-
ences in Central Europe on Computer Graphics, Visualization
and Computer Vision (WSCG), 15, 59–65.

Silva, N., 2016. Lyon. https://github.com/nical/lyon. Visited on
2022-06-01.

Trapp, M., Dollner, J., 2019. Real-time Screen-space Geometry
Draping for 3D Digital Terrain Models. Proc. of the Interna-
tional Conference Information Visualisation (IV), IEEE, Paris,
France, 281–286.

V8, 2008. https://v8.dev/. Visited on 2022-06-01.

Wallace, E., 2016. Easy Scalable Text Rendering on
the GPU. https://medium.com/@evanwallace/easy-scalable-
text-rendering-on-the-gpu-c3f4d782c5ac. Visited on 2022-06-
01.

Wasm Needs a Better Memory Management Story (#1397),
2021. https://github.com/WebAssembly/design/issues/1397.
Visited on 2022-06-01.

WebGL, 2011. https://www.khronos.org/webgl/. Visited on
2022-06-01.

WebGPU, 2021. https://www.w3.org/TR/webgpu/. Visited on
2022-06-01.

Wgpu, 2019. https://gfx-rs.github.io/2019/03/06/wgpu.html.
Visited on 2022-06-01.

Williams, L., 1978. Casting Curved Shadows on Curved Sur-
faces. Special Interest Group on Computer Graphics (SIG-
GRAPH), 270–274.

Zakai, A., 2011. Emscripten: An LLVM-to-JavaScript com-
piler. Proc. of the International Conference on Object-
oriented Programming, Systems, Languages, and Applications
(OOPSLA), ACM, Portland, Oregon, USA, 301.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W1-2022
Free and Open Source Software for Geospatial (FOSS4G) 2022 – Academic Track, 22–28 August 2022, Florence, Italy

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-35-2022 | © Author(s) 2022. CC BY 4.0 License.

42

	Introduction
	Background
	Code Portability
	Graphics Portability

	State-of-the-art
	Review of Map Renderers
	Proof of concept
	Rendering Architecture
	Design
	schedule
	data pipeline
	renderer
	window and event loop
	input
	platform specific modules

	Features
	Vector tile tessellation
	Vector tile styling
	Coordinate systems and tile matrix
	Portable text rendering
	Portable networking
	Geometry extrusion
	Headless mode

	Web Platform Limitations
	Raster tile decoding
	Multi-processing and multi-threading
	Wasm Memory Management

	Library Packaging
	Web Package
	Android SDK
	iOS and macOS SDKs

	Conclusion and Future Work
	Acknowledgments

