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ABSTRACT
We put forth a system, to predict distant-future positions of mul-
tiple moving entities and index the forecasted trajectories, in or-
der to answer predictive queries involving long time horizons. To-
day, the proliferation of mobile devices with GPS functionality and
internet connectivity has led to a rapid development of location-
based services, accounting for user mobility prediction as a key
paradigm. Mobility prediction is already playing a major role in
traffic management, urban planning and location-based advertising,
which demand accurate and long time horizon forecasting, of user
movements. Existing prediction methodologies, either use motion
patterns or techniques based on frequently visited places for pre-
dicting the next move. However, when it comes to distant-future,
human mobility is too complex to be represented by such statistical
functions. Therefore, the existing techniques are not well suited to
answer distant-future queries with a satisfactory level of accuracy.
To tackle this problem, we introduce a novel spatial object, ’Rep-
resentative Trajectory’, which embodies the movements of users
amongst their zones of interest. We propose means to empirically
evaluate the quality of this object and dynamically adapt its extrac-
tion method based on user mobility behaviour. We rely on an in-
verted index to store the predicted trajectories that scales well with
the number of moving entities. Our evaluation results show that the
technique achieves more than 70% accurate predictions with the
best extraction technique. This shows that longer query time hori-
zons do not necessarily demand complex spatial indexing schemes,
which have to be rebalanced as they grow, which is a constantly
experienced problem while answering predictive queries.
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H.3 [INFORMATION STORAGE AND RETRIEVAL]: Con-
tent Analysis and Indexing
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Figure 1: Overview of the System Model.

1. INTRODUCTION
The booming trend of ubiquitous computing, behavioural pre-

diction and ease of availability of internet services, is directly im-
pacting the way we store, retrieve, process and query data. The
coming era will witness dramatic advances in the domain of posi-
tioning technologies and localisation. Therefore, location tracking
and user mobility prediction is becoming increasingly important.
Formulating prediction techniques to attain satisfactory accuracies
at high granularities puts forth several challenges. Firstly, maintain-
ing high accuracy is crucial for applications such as urban planning,
traffic prediction and managing fleets of autonomous vehicles. Sec-
ondly, when multiple moving users are involved, it is important to
have a scalable indexing technique specially while answering pre-
dictive queries.

The existing solutions to the aforementioned problems are not
well adapted to solve all the requirements mentioned above. Firstly,
the prediction techniques that are built on motion functions, pattern
mining or temporal extrapolations, do not truly capture the com-
plex nature of human movement. This factor is especially critical
when accounting for distant future predictions, which typically lie
in the order of several hours, for which such statistical means fail.
The second problem is, the existing techniques, which attempt to
model long time horizon predictions, collect a set of frequently vis-
ited places by the user and formulate the future place prediction
within this set. Such techniques lose the information lying in be-
tween these frequently visited places, which is essential to achieve
the fine granularity while predicting. An application, where such a
level of prediction comes in useful, is to answer predictive queries
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related to vicinity matching around some locations that are not nec-
essarily included in the set of frequently visited places of a user, but
may lie on the trajectory taken to travel from one frequent place to
another. The present techniques, which index trajectories, rely on
tree structures that require rebalancing when the tree is updated and
thus present scaling issues specially when multiple moving points
are involved.

In this paper, we put forth solutions to the above problems and
propose a complete system capable to answer the kind queries as
expressed below, and depicted in Figure 2. The query can be ex-
pressed as: "Select all the users who will travel in the vicinity of a
given location during their next move with a probability higher than
a given threshold". We first extract the frequently visited places of
the user, formally called Zones of Interest (ZOIs), and the transi-
tions amongst them that will be used to train a Markov mobility
model. We then extract the past trajectories in order to attain all the
possible paths the user takes amongst ZOIs. We introduce a novel
spatial object, "representative trajectory" that captures the substan-
tive user mobility behaviour and adapts its extraction according to
the dynamically changing user movements. The representative tra-
jectories are then indexed when a user enters in a ZOI to answer
predictive queries. The system overview is depicted in Figure 1.
Our key contributions are listed hereafter.

• We put forth a complete system capable of predicting distant
future trajectories of mobile users and thus answering match-
ing queries for multiple moving users. This is made possible
by taking the transitions within the individual ZOIs, thus ac-
counting for trajectories lying within and therefore achieving
higher granularity.

• Our ZOI and representative trajectory computation scheme
considers dynamic user movements and adapts the compu-
tation parameters according to the mobility behaviours. We
introduce a novel spatial object, called ’Representative Tra-
jectory’, which captures the practical nature of human mobil-
ity, by considering the fact that, users can move between two
ZOIs through different paths. We further discuss and derive
means to extract the best path amongst the several paths to
represent the most significant trajectory of the user.

• We describe an evaluation framework that utilises precision
and recall to access the quality of representative trajectories.

• Lastly, we present a practical indexing technique based on
inverted index, in order to store the trajectory predictions.

This technique does not demand costly rebalancing actions
as opposed to existing tree structures.

2. RELATED WORK
Indexing past, current and future positions of moving entities in

order to answer predictive queries is an actively research topic, due
to the ubiquity of location based services. Therefore, it is important
to distinguish our contribution from the plethora of existing works.
At the top level, the literature can be separated, into queries related
to a single point moving in one dimensional space, viz., "find all
café’s around me in next hour" [15, 18, 16] and queries account-
ing for multiple moving points in space, viz., "find all users that
will be in the vicinity of café X in next hour". Secondly, the exist-
ing work can also be separated on the basis of the sampling rate
of tracking the moving object locations. Low sampling rate based
approaches rely on manual checkins by the users that may range in
the order of one location log a day. On the other hand, high sam-
pling rate based approaches, track the user locations after every few
seconds. Both these approaches, demand different prediction and
indexing techniques and the low sampling rate based technique as
presented in [2] is beyond the scope of this work. The prolifer-
ation of mobile devices with GPS functionality and uninterrupted
internet services today, foster and ease the process of continually
tracking the moving objects with a high sampling rate. Hence our
focus lies on location logs collected at high sampling rates. Further,
the time horizon of the query window is an important aspect, which
can be dissected into near future and distant future queries. Major-
ity of the published work today, focuses on near future queries in
the order of next 15 minutes [15, 18, 16, 14, 1]. However, our work
focuses on distant future queries in the order of several hours. The
work attempting to solve distant future queries relies on motion pre-
diction techniques by modelling the movement in terms of motion
patterns, motion functions and temporal extrapolation [17]. How-
ever, according to our observation, such prediction methodologies
fail to grasp and accurately represent long term user movements.
Therefore, we utilise Markov models to perform distant movement
predictions. We further discuss how to index such predictions for
efficiently answering the queries we described in Section 1. To
summarise, our work lies in answering vicinity matching queries
for multiple moving points, whose location logs are tracked at a
high sampling rate. We focus on distant future queries that demand
accurate prediction methodology for which we depend on mobility
Markov models.

Regarding the prediction techniques, a majority of existing work
is focussed on predicting movements between certain points of in-
terests [3, 20, 13, 5, 4, 12]. A domain of research also relies on cell
based techniques for making predictions at the granularity of net-
work cells [3, 12]. Such schemes completely ignore the trajectories
lying in between the individual places, which is critical to answer
distant future queries, involving multiple moving points with a high
degree of accuracy. Additionally, the size of a typical network cell
lies in the range of several kilometres, which is not adequate to an-
swer queries related to fine grained vicinity matching. On the other
hand, predictions based on map matching techniques are complex
and need additional services such as network availability, which
is not always feasible and is computationally expensive [9]. Ex-
isting prediction techniques considering user trajectories amongst
points of interests do not store these models, which is a critical
factor to answer certain queries. Further, Kalman filter based pre-
diction approaches, involve higher complexity and thus results in
higher latency as discussed in [11]. Our work consists of estimat-
ing the ZOIs in which a user spends considerable amount of time
and then attain the representative trajectory in between these zones



that assist to answer the queries described above. Several tech-
niques have been demonstrated to extract points of interest of users
whose central theme is based on clustering [16]. As compared to
these traditional approaches, our clustering technique enables to ex-
tract the frequently visited places of a user according to the mean
of the number of visits, the time spent and the distance covered in
the significant location, which better represents such a place. Ad-
ditionally, setting the spatiotemporal bounds based on individual
mobility behaviour allows to extract places that are not necessar-
ily found with direct clustering. Further, we follow a technique
to dynamically adjust the parameters to extract the representative
trajectory based on the user behaviour to consistently maintain sat-
isfactory levels of precision and recall. Thus, unlike the methods
presented in the literature, we account for the user behaviour to set
parameters for both, extracting the ZOIs and representative trajec-
tories lying in between the zones.

In traditional indexing schemes, the content is only altered when
users explicitly perform updates. This is as opposed to indexing
moving object locations, where the data quickly becomes outdated
and continual write operations are necessary to keep the data up-
dated. A common approach to address this issue and decrease the
number of updates is to adopt an alternative model for represent-
ing the location of moving objects. In [15], Saltenis et al. present
techniques to index positions of continuously moving objects. The
position of the objects is modelled as linear/non-linear function of
time and velocity. They present efficient techniques to index trajec-
tories and partition R-Tree containing motion functions. However,
as previously discussed, such techniques fail to accurately formu-
late distant future predictions. In [6], Hendawi el al. present a
framework to predict answers to queries as well as queries them-
selves by monitoring high query rate areas. However, this tech-
nique is restricted to a single object prediction. In [7], Bao el at.
propose an index structure for processing predictive queries, how-
ever with the assumption that moving objects follow shortest paths
during their travel from source to the destination, which is not nec-
essary true in practice according to our observation on real work
mobility traces. In [16], Tao et al. present methods to predict and
index unknown motion patterns of moving objects using recursive
motion patterns to express complex trajectories. In [19], Yanagi-
sawa et al. model the motions into 3 distinct categories including
staying, moving straight and moving randomly. In [8], Jeung et al.
present a hybrid prediction model for near future and distant fu-
ture predictions. However, all these methods are either based only
on frequently visited places and ignore encompassed trajectories or
fail to model distant future predictions. The indexing techniques,
discussed in [15, 18, 16], rely on tree structures that require rebal-
ancing as the number of moving points increase and thus do not
necessarily scale well. As a result, our approach is based on a sim-
plistic and practical strategy, which is an inverted indexing model.

3. SYSTEM MODEL AND DEFINITIONS
In this section, we introduce our system model, with formal def-

initions and notations.

3.1 Users and Locations
We consider a set of users U = {u1, . . . ,un} moving on the sur-

face of the earth with mobile devices that have the ability to locate
themselves, typically via the Global Positioning System (GPS)1

or some other positioning means, e.g., WiFi Positioning System
(WPS).2 The definitions presented below are from the view point

1http://www.schriever.af.mil/GPS
2http://en.wikipedia.org/wiki/Wi-Fipositioningsystem

Figure 3: Clusters, Cluster Groups and Zones of Interest.

of one user. The location history of the user is expressed as a se-
quence L of n locations, as L = 〈loc1, . . . , locn〉. Each location, loci
contained in L, is represented by a 3-item tuple loci = (φ ,λ , t). The
latitude and longitude of the coordinate are represented by φ ,λ ∈R
respectively, and its timestamp by t ∈ N.

3.2 Clusters and Zones of Interest
In order to extract the Zones of Interest (ZOI) of a user based on

the location history L, we must first introduce the notions of cluster
and cluster group.

3.2.1 Cluster
A cluster represents a visit or a stay in a delimited area. It is

formed from a subset of locations, sharing the same spatial and
temporal characteristics. A cluster is a 4-item tuple c= (φ ,λ ,∆r, l),
where φ and λ ∈ R are the latitude and longitude coordinates of a
centroid, ∆r ∈ R is its radius in meters and l ∈ L is the subset of
successive locations belonging to c. The centroid of the cluster is
the mean of all φ and λ of the locations contained in l. Here, the ra-
dius corresponds to the maximum distance between the centroid of
the cluster and the locations belonging to l. In order to build clus-
ters, we introduce the constraining constants ∆dmax and ∆tmin ∈ R,
which correspond to the distance expressed in meters and a time
duration expressed in seconds respectively. The distance between
all the locations lying inside l and the centroid of the cluster must
be lower than or equal to ∆dmax. In addition, the duration between
the first location and the last location must be greater than or equal
to ∆tmin. On this basis, we introduce C, the set of clusters extracted
from the location history of a user as C = {c1, . . . ,cn}.

3.2.2 Cluster Group
A cluster group is an aggregation of overlapping clusters. For-

mally, a cluster group is as 4-item tuple g = (φ ,λ ,∆r,{c1, . . . , cn}).
The first three items of a cluster group are the same as the ones
present in a cluster. Clusters are grouped whenever they overlap.
Consequently, the last item of the tuple corresponds to the set of
n overlapping clusters belonging to C. The centroid of the clus-
ter group is the mean of all the centroids of the clusters contained
in g, and ∆r must be computed in order enclose all the individual
clusters present in g. Finally, we introduce G which contains the n
cluster groups belonging to a user as G = {g1, . . . ,gn}.
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3.2.3 Zone of Interest(ZOI)
Intuitively, a ZOI is a cluster group that is frequently visited by a

user. Let vmin ∈ N be a constant that represents a minimal number
of visits. A cluster group becomes a ZOI if and only if the number
of clusters in the group is greater than or equal to the constant vmin.
However, if we only take into account this constant, it is not pos-
sible to find the ZOIs of a user from the beginning of the process,
especially if a very high value is set a priori. To resolve this is-
sue, we introduce a variable vmean which is the mean of the number
of visits per cluster for a user. This value acts as a reference visit
threshold until reaching vmin. A ZOI consists of the same items as
those of g, further denoted as z to distinguish the two tuples. The
centroid and the radius values of z are the same as for g. In addition,
we introduce a set Z containing the n ZOIs of a user represented as
Z = {z1, . . . ,zn}.

3.3 Trajectories
A user can take multiple paths to move from one ZOI to another.

Consequently, we introduce the set of trajectories Ti, j that can be
extracted from the raw set of locations L. Formally, Ti, j is a set of n
trajectories Ti, j = {l1, . . . , ln}, where each trajectory li is a substring
of the sequence L in which the first location is contained in zi and
the last location is located in z j. In addition, the locations recorded
between zi and z j in li do not pass over trajectories going towards
any other ZOI.

3.4 Mobility Prediction Model
In this work, we consider a mobility prediction model follow-

ing the structure of a first order Markov chain. Each user has a
unique Markov chain, computed on the basis of the elements de-
fined previously. Equation 1 depicts a matrix M containing n× n
transitions probabilities, where n = |Z|. In other words, each ZOI
is a state of the matrix M and a transition probability pi, j represents
the probability to move from a specific zi to another z j. As shown
in Equation 2, the transition probabilities pi, j of the matrix M can
be computed using the cardinalities of the sets of trajectories Ti, j.

M =


p1,1 . . . p1,i . . .

...
. . .

...
. . .

p j,1 . . . pi, j . . .
...

. . .
... pn,n

 (1)

pi, j =
|Ti, j|

∑
zk∈Z
|Ti,k|

(2)

4. PREDICTING TRAJECTORIES
Given two ZOIs zi and z j, we consider the problem of computing

the trajectory that accurately predicts the future moves from one
zone to the other. In other words, the idea consists in extracting
spatial objects from the actual trajectories that represent the future
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Figure 5: Precision and recall in the context of trajectories

trajectories of a user between ZOIs. We call these spatial objects
representative trajectories as they capture the essence of the past
movements of a user amongst ZOIs. In this section, in order to
evaluate the predictive capacity of a representative trajectory, we
first introduce some measures that can be used to assess their accu-
racy. We then evaluate several strategies for building representative
trajectories, some of which take the behaviour of the user into ac-
count in order to make the predictions more relevant.

4.1 Evaluating Representative Trajectories
The first question to answer is, "how can the effectiveness of a

representative trajectory, be measured in the context of a predictive
query?". In information retrieval, the performance of a system is
often measured in terms of precision and recall. Given the results
of a query, binary classification is used to assess how many of the
results are relevant (precision) and how many relevant results were
selected (recall). Similarly, given the actual trajectory followed by
a user and the corresponding predicted trajectory, it is possible to
assess how many subparts of the trajectory are relevant according
to the predicted trajectory (precision) and how many subparts of
the predicted trajectory were selected (recall). To achieve this goal,
we discretise space by introducing a Grid that allows us to perform
binary classification on all the subparts of a trajectory. More for-
mally, a Grid can be described as a set of uniquely identified cells,
such that Grid = {cell1, . . . ,celln}. Figure 4, illustrates the calcula-
tion of precision and recall in the context of discretised trajectories.
Assuming t a set of cells corresponding to a actual trajectory and r
a set of cells corresponding to a representative trajectory, the num-
ber of true positive cells T P can be expressed by the cardinality
|t ∩ r|, the number of false positive cells FP can be expressed by
the cardinality |t−r| and the number of false negative cells FN can
be expressed by the cardinality |r− t|. Consequently, precision can
be expressed as T P/(T P+FP) and recall by T P/(T P+FN). On
this foundation, we formally introduce Precision and Recall which
are defined in Equations 3 and 4. Finally, the measure Fβ , often
denoted as F-score, combines precision and recall in a single met-
ric that can be expressed as the weighted harmonic mean described
in Equation 5. Depending on the situation, one may decide to give
more importance to precision or to recall by adjusting the weight
factor β .

Precision(t,r) =
|t ∩ r|

|t ∩ r|+ |t− r|
(3)



Recall(t,r) =
|t ∩ r|

|t ∩ r|+ |r− t|
(4)

Fβ (t,r) = (1+β
2) · Precision(t, r) ·Recall(t, r)

β 2 ·Precision(t, r)+Recall(t, r)
(5)

Figure 5 shows how precision and recall can be calculated given
the cells of an actual trajectory t and the cells of a representative
trajectory r. As illustrated here, precision and recall accurately an-
swer the questions how many subparts of the actual trajectory t are
relevant according to the representative trajectory r and how many
subparts of the predicted trajectory were selected. Figure 5a shows
that, if t and r perfectly overlap, then precision and recall are high.
Figure 5b shows that, when r is a subset of t, then precision drops
because only few cells of the actual trajectory are relevant accord-
ing to the representative trajectory. Figure 5c shows that if t is a
subset of r, then recall drops, because only a few cells of the rep-
resentative trajectory were selected. Finally, Figure 5d shows that,
when t and r do not overlap, precision and recall are both low.

4.2 Building Representative Trajectories
In the previous section, we have not considered how the cells of

a representative trajectory were actually selected. In order to build
this representative trajectory, we first introduce the set τi, j that is a
discretised version of the set of trajectories Ti, j . More formally, τi, j
is a set of n discretised trajectories τi, j = {t1, . . . , tn}, where each
trajectory tk is a set of n cells such that tk ∈ τi, j : {cell1,cell2, . . . ,celln}.
The importance of a cell in a representative trajectory is defined by
its number of occurrences in τi, j . Thus, we introduce the multi set
Oi, j that counts the number of occurrences of a cell in τi, j and can
formally be defined as Oi, j ⊆ Grid×N∗. Finally, the cells with
a number of occurrences greater than a given threshold are gath-
ered in set Ri, j that constitutes the representative trajectory. As a
consequence, when building a representative trajectory, the main
challenge consists in selecting a threshold θ ∈ N∗ that will select
the most accurate and relevant cells for predicting the future moves
of a user. In a more formal way, given the threshold θ , a represen-
tative trajectory Ri, j can be obtained with the function described in
Equation 6.

R(Oi, j,θ) = {c|(c,n) ∈ Oi, j ∧n≥ θ} (6)

In addition to these general definitions, we introduce some util-
ity functions that can be used to select thresholds that take the be-
haviour of the user into account. The function Mean(Oi, j), for-
mally defined in Equation 7, returns the mean number of cell occur-
rences of the multiset Oi, j. In a similar way, the functions Min(Oi, j)
and Max(Oi, j), defined in Equations 8 and 9, return the minimum
and maximum number of cell occurrences of Oi, j respectively.

Mean(Oi, j) =

∑
(c,n)∈Oi, j

n

|Oi, j|
(7)

Min(Oi, j) = min
(c,n)∈Oi, j

n (8)

Max(Oi, j) = max
(c,n)∈Oi, j

n (9)

In the previous section we introduced Precision and Recall in the
context of a trajectory t and a representative trajectory r. Since τi, j

contains several discretised trajectories, we introduce the functions
AvgPrecision(τi, j,r) and AvgRecall(τi, j,r) respectively defined in
Equations 10 and 11 which measure the average precision and the
average recall for multiple sets of cells.

AvgPrecision(τi, j,r) =
∑

t∈τi, j

Precision(t,r)

|τi, j|
(10)

AvgRecall(τi, j,r) =
∑

t∈τi, j

Recall(t,r)

|τi, j|
(11)

4.2.1 Mean Threshold
An obvious approach to select a threshold, consists in using the

mean cell occurrences as illustrated in Equation 12. While this
method is straightforward and computationally efficient, it does not
account for the behaviour of the user within the ZOIs. For example,
during the week, a user may always take the same route to go from
home to work, while during the weekend he would leave home for
excursions and come back at the same place. A threshold, based on
the mean of the cell occurrences, is not adapted to capture this kind
of behaviour.

θmean = Mean(Oi, j) (12)

4.2.2 F-Score Threshold
In order to build better representative trajectories, we can con-

sider the problem of selecting the threshold as an optimisation of
the Fβ score introduced in Section 4.1. In other words, given the
trajectories of a set τi, j, the idea consists in computing the aver-
age F-Score for all the possible thresholds. Then, the threshold
that gives the best average score for Fβ can be considered as the
best possible threshold for the representative trajectory. More for-
mally, assuming a set of candidate representative trajectories CRi, j
expressed in Equation 13, one can find the representative trajectory
that gives the best F-Score, as described in Equations 14 and 15.

CRi, j = {rθ = R(Oi, j,θ)|θ ∈ [Min(Oi, j),Max(Oi, j)]} (13)

∀rθ ∈CRi, j : Fθ

β
=

∑
t∈τi, j

Fβ (t,rθ )

|τi, j|
(14)

Fmax
β

= max
rθ∈CRi, j

Fθ

β
(15)

Finally, θFβ
can be defined as the min θ for which Fmax

β
= Fθ

β
.

With this approach, one can decide to give more importance to pre-
cision or recall by adjusting the β parameter. The main disadvan-
tage of this technique lies in the fact that, Fβ scores have to be
computed over all the possible thresholds, which is computation-
ally expensive.

4.2.3 Adaptative Threshold
A third approach consists in assuming that precision and recall,

both contain meaningful insights, regarding the behaviour of the
user, that can be used to adapt an existing threshold. First, as il-
lustrated in Figure 5a, if the user always follows the same path,
the representative trajectory is easy to build and the precision and
recall are both expected to be very high. In that case, no actions
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are needed. Second, as illustrated in Figure 5b, a low precision
and a high recall suggests that the user takes several paths to go
from one place to the other. Some regular paths are not included
in the representative trajectory, which causes the precision to drop.
Consequently, the threshold used to select the cells can be low-
ered in order to include these cells in the representative trajectory.
Third, as illustrated in Figure 5c, a low recall with a high precision
suggests exactly the opposite. The user follows several paths and
some insignificant ones are included in the representative trajectory.
Consequently, the threshold used to select the cells can be strength-
ened. Finally, as illustrated in Figure 5d, if the user does not have a
consistent behaviour between two ZOIs, which usually happens for
week-end excursions, the precision and recall both drop and can be
used as insights on the poor quality of the representative trajectory.
In order to account for these different scenarios, we first compute
a representative trajectory r using the mean threshold, such that
r = R(Oi, j,θMean). On this basis, Equation 16 introduces a read-
justed threshold that accounts for the user behaviours as discussed.

θA = Max(Oi, j)∗
AvgPrecision(τi, j,r)+(1−AvgRecall(τi, j,r))

2
(16)

5. SOLUTION ARCHITECTURE
The previous sections showed how representative trajectories can

be extracted from the location data of a single user. In this section,
we go back to the initial requirement which consists in a predictive
query involving a set of users. We present a solution architecture
based on an inverted index that can be used to answer such queries.
In its simplest form, an inverted index is composed of two parts:
a dictionary of terms where each element points to a postings list.
In the context of text retrieval, the terms of the dictionary would
correspond to words and the postings would correspond to lists of
documents. In our context, the terms of the dictionary are the cells
of a Grid and the postings correspond to tuples (u, pi, j) where u
is a user identifier belonging to U and pi, j corresponds to the tran-
sition probability between two ZOIs, zi and z j belonging to M as
introduced earlier. On this foundation, the architecture can be di-
vided into three distinct procedures that act on the different layers
depicted in Figure 6.

Z2

Z3

Z1
0.9

0.4

0.8
0.2

0.1

0.5

Markov Chain

Z1

Z2

Trajectories

x

y

t

Z3

Z1
Z2

Zone of Interest

0.1

Representative Trajectories

1 2

3

4

Z3 Z2T3,2

c1 c2

c3

c4 c5 c6 c7

c8 c9

c10 c11 c12 c13 c14

c15

T3,2

R3,2

R3,2

Figure 7: Extracting Representative Trajectories.

5.1 Prediction Model Extraction
The first procedure aims at extracting the representative trajec-

tories from the location history of a user. Figure 7 recalls the four
main successive steps involved in the extraction of the representa-
tive trajectories. These steps are described as below and executed
for each user u belonging to the set U .

1. Zones of Interest discovery. As introduced in Section 3, the
procedure, first uses a clustering algorithm to extract the set
of ZOIs, called Z, from the location history L.

2. Trajectories extraction. On the basis of the discovered ZOIs,
the sets of trajectories Ti, j, amongst ZOIs can be extracted by
examining the location history L a second time.

3. Markov chain computation. The sets of trajectories Ti, j
can then be used to compute the transition probabilities pi, j
of the Markov chain M. The Markov chain M is then stored
for later use.

4. Representative trajectory extraction. The set of trajecto-
ries Ti, j can also be used to compute the representative tra-
jectories Ri, j. All the representative trajectories Ri, j are then
persisted for later use.

5.2 Inverted Index Update
Using the previously persisted items, the second procedure up-

dates the inverted index every time a user enters in one of the ZOIs.
Before presenting the procedure in detail, we must introduce vari-
ables zi and z j that are assumed to be the current and the predicted
ZOIs of a user respectively. Figure 8 depicts the four following
steps enabling to update the inverted index.

1. Current ZOI extraction. The procedure is triggered when
a user u enters in one of the ZOIs and the identified ZOI
becomes the current ZOI zi. From that point, it is possible to
find all the next possible ZOIs and their respective transition
probabilities in the matrix M.

2. Next ZOI prediction. The predicted ZOI z j corresponds to
the ZOI with the maximal transition probability pi, j in the
Markov chain M amongst the transitions from zi.
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3. Representative trajectory retrieval. As soon as the current
and predicted ZOIs are identified, the representative trajec-
tory Ri, j associated with zi and z j can be retrieved amongst
all the representative trajectories stored for the user.

4. Inverted index update. After the retrieval of the representa-
tive trajectory Ri, j, the inverted index must be updated. To do
so, the tuple (u, pi, j) is added to all the postings lists pointed
by the cells of the representative trajectory.

5.3 Answering the query
The third procedure is used to answer queries. We consider

queries of the following nature: "Select all the users who will travel
in the vicinity of a given location during their next move with a
probability higher than a given threshold". We assume that we
know the search zone to initiate the query, which can be formally
expressed as a tuple searchzone = (loc,∆r) by the requestor. In
addition, the probability threshold stated in the query is denoted
pth. In order to answer the query the searchzone is first converted
into a set of cells belonging to the Grid and called searchcells. As
illustrated in Figure 9, assuming that the predicted representative
trajectories Ri, j have been added to the inverted index for each user
belonging to U , it is now possible to retrieve all the users who will
move through the cells specified in the query. In other words, users
are selected if the following two conditions are met. First, when
at least one cell of their representative trajectory of their next pre-
dicted move matches with one of the searchcells. Second, if their
probability pi, j associated with their matching cell is greater than
or equal to the probability threshold pth.

6. EVALUATION AND DISCUSSION
We perform the evaluation of the system based on the Nokia data

set [10], which consists of mobility traces collected from 188 users
around lake Geneva region in Switzerland from October 2009 to
March 2011. The mean duration of the participants, which mainly
consisted of university students and professionals, was about 14
months consisting of more than 10 million location points. We im-

searchcells

Search zone

c12 c10

c8

Inverted index

… …

… …

c12

c10

c8

List

List

List

All distinct 
users iff for each 
user and cell =>

pi,j  ≥  pth

Output

Figure 9: Answering the Query.

plemented the components of our architecture, including the clus-
tering algorithm, the Markov chain and the representative trajectory
extraction algorithms in Scala. We used the Java Google S2 Library
in order to discretise space 3. The grid provided by this library
comes with the guarantee that the cells will have similar areas and
we configured it to produce cells which are one square kilometre
on an average. In the context of this evaluation, we used a first or-
der Markov chain to predict the movements of a user across ZOIs.
This choice was motivated by the fact that, our experiments with
second order Markov chains showed a gain of only 2% in terms of
accuracy for predictions made with the whole dataset. We believe a
much greater gain in terms of accuracy can be obtained by simply
cleaning and sanitising the dataset.

In order to evaluate our methods for building representative tra-
jectories, we used 70% of the dataset for creating the Markov chains
and the representative trajectories. Using the remaining 30% of the
dataset, we performed 4727 trajectory predictions and evaluated
the quality of the outputs using the actual trajectories followed by
the users. Figure 10 uses two dimensional kernel density estimate
(KDE) to evaluate these predictions in terms of precision and re-
call. In these plots, a high density corresponds to a large concen-
tration of predictions. The density can be greater than one as the
probability is multiplied by an area of the two dimensional space.
In these plots, the upper-right corner is the sweet spot. As illus-
trated in Figure 10a we ideally foster predictions characterised by
a high precision and a high recall. The lower-right corner would
typically contain predictions as the one illustrated in Figure 10b.
Such predictions are symptomatic of a strong threshold that filters
too many cells out of the representative trajectory. On the contrary,
the upper-left corner would typically contain predictions as the one
illustrated in Figure 10c. Such predictions are often synonym of a
weak threshold that preserves too many cells in the representative
trajectory. Finally, the lower-left corner contains results charac-
terised by a poor precision and a poor recall as the one illustrated
in Figure 10d. Such predictions can be synonymous with an in-
consistent behaviour between the ZOIs or with a completely wrong
result at the level of the Markov chain.

The five threshold selection methods we evaluate in order to
build representative trajectories are Mean (θMean), F1 (θF1 ), F2 (θF2 )
and F3 (θF3 ) and A (θA). In Figure 10a, the threshold is set to the
Mean number of occurrences of the cells in the representative tra-
jectory. This plot highlights a high density on the upper side, i.e,
predictions are usually characterised by a high precision but recall
varies a lot. As previously stated, this gives us the intuition that the
threshold is too weak. When the user takes several distinct paths
to go from one ZOI to the other, some irrelevant cells are included
in the representative trajectories. Therefore, this method fails at ac-
curately accounting for the behaviour of the user and may return a
significant number of cells when used in practice. In Figure 10b,

3https://github.com/google/s2-geometry-library-java
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Figure 10: Precision-Recall Kernel Density Estimation (KDE) for various thresholds selection methods

the threshold is obtained by searching a value that gives the best
Fβ score when β is set to 1. In that case, the density plot high-
lights predictions characterised by a very high recall but a highly
varying precision. This is symptomatic of a strong threshold value
that filters out most of the cells of the representative trajectory. In
other words, the predicted cells will be highly accurate but cover
only a subpart of the trajectory followed by the user in practice. In
Figure 10c and 10d, the β score is respectively set to 2 and 3. Here
the tradeoff between precision and recall is clearly highlighted by
the fact that, the predictions shift towards a better balance between
precision and recall. The positive impact of adjusting the β weight
shows that the selected thresholds produce fewer predictions at the
upper-left and lower-right corners in Figure 10d. In Figure 10e, the
threshold is adaptive and set by taking the behaviour of the user
into account as shown in Equation 16. As highlighted in this plot,
we obtained the best tradeoff between precision and recall with this
method. Furthermore, the density shows that only few results are
characterised by a low precision or a low recall. Finally, as previ-
ously demonstrated, this method is more efficient than the others
since it is not required to compute the Fβ score for all the possible
thresholds.

Figure 10f highlights the average prediction and recall obtained
with the five techniques. This plot clearly illustrates the tradeoff
that occurs between precision and recall and confirms the well bal-
anced results we obtain with the threshold A. Interestingly, if we

compare the results in terms of F-score, as it is often the case in In-
formation Retrieval, the combination of precision and recall would
give similar values. Adjusting, the β score may help at evaluating
the methods with a single measure, but, as it will be done in the
next section, we advise to visually check the predictions in order
asses the quality of the tradeoff between precision and recall.

We now give an overview of the predictions extracted from the
dataset with a first order Markov chain and an adaptative threshold
θA. In Figure 11, the blue cells correspond to the predicted repre-
sentative trajectories. The green and red circles correspond to the
starting and ending ZOIs respectively. The black line corresponds
to the path followed by the user between the two ZOIs. We first
notice that most predictions are visually accurate, in particular the
one presented in Figure 11 a, b and e which are characterised by
a high precision and a high recall. Some predictions, such as the
ones highlighted in Figure 11 c and f are correct but at some point
the user probably decided to take an alternative path for some un-
known reasons. Since we are in the context of future movements,
we can easily imagine that, in a live system, the result of the predic-
tion could be used to create an incentive that would influence the
behaviour of the user and directly impact the quality of the predic-
tions. Some predictions, such as the one depicted in Figure 11 b,
d and f, have the same starting and ending ZOIs. Such results can
typically not be obtained with methods that solely rely on ZOIs and
shortest paths to make predictions and clearly highlight the benefit
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Figure 11: Predictions made with a first order Markov chain and a A threshold.

of using representative trajectories to predict future moves.

7. CONCLUSION
The growing ubiquity of mobile devices equipped with location

aware services is opening the opportunities for novel applications.
It is becoming possible to predict human mobility on a large scale
today, which can be utilised to answer predictive queries. This
has put forth some challenges, which the current prediction and
indexing techniques are not well adapted to solve. Through this pa-
per, we introduce an architecture that is capable to predict mobility
over long time horizons, index the predicted trajectory and answer
the relevant queries. Predicting mobility at distant futures allows
to devise applications involving high level planning and manage-
ment. To facilitate this, we present a novel spatial object, ’Repre-
sentative Trajectory’, that accounts for user movements within their
ZOIs. Further, we propose means to empirically adapt the extrac-
tion of such objects depending on user mobility behaviour. The
achieved results over real world mobility traces corroborates our
solution, which achieves more than 70 % correct predictions with
the best suited extraction method. Our indexing technique, based
on inverted indexing, scales with the number of users unlike the
tree structures proposed by existing works for predictive indexing.
More importantly, we highlight the limits of mobility models, that
solely rely on frequently visited places in the context of distant fu-
ture predictions. Our analysis also shows that the trajectories taken
in practice are often complex and as such, the user behaviour has
to be taken into account for prediction over distant future. This
justifies the requirement for such a spatial object and the indexing
technique in order to improve the quality of distant future predic-
tions.

8. FUTURE WORK
Our solution architecture involves several layers, each of which

may be enhanced for further developments. For clarity, our initial
model considered the problem in its simplest form and our future
research will foster improvements. Sets of cells are used to con-
struct representative trajectories and some useful notions may en-
rich them in order to predict the future movements with a higher
accuracy:

1. The model initially relies on a clustering algorithm to find
ZOIs. Current techniques often merge overlapping visited
places to estimate them, and the resulting areas can be rela-
tively large. Among other possibilities, adding a notion of
time at this level may help at discovering ZOIs with fine
granularities and thus avoiding some undesirable merges.

2. The model uses Markov chain and its transition probabilities
for formulating predictions. In the future, preserving some
notion of time, as well as the number of occurrences of a
given cell, in the representative trajectories may help at com-
puting these probabilities more accurately and thus making
better predictions.

3. The model uses relatively large overlapping cells of one square
kilometre to compute representative trajectories. We observed
that when reducing the size of the cells, the model starts suf-
fering from the lack of precision, introduced by tracking de-
vices. Since the discretisation of space with a grid is really
close from what occurs when a vector image goes through
rasterisation, techniques coming from this field, such as anti-
aliasing, may help at improving the granularity of the predic-
tions.



Such additions to the model may compromise the system in terms
of scalability and is bound to an exhaustive performance analysis.
We observed that, the size of our dataset and other publicly avail-
able datasets such as GeoLife [21] fits in the memory and are there-
fore not sufficiently large enough to produce an in-depth quantita-
tive analysis as well as relevant performance measures. A possible
solution would be to generate a large synthetic dataset. While such
synthetic datasets may be satisfying for performance and scalability
measures, they can hardly grasp the complex nature of the human
behaviours required for a quantitative analysis. A solution may be
to produce synthetic traces based on the mobility models of real
users with the aim to reproduce the complex behaviours. Conse-
quently, before investigating these improvements, our priority is to
find a suitable way to validate our current findings.
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