
Privacy-Preserving Location-Based Services by using
Intel Software Guard Extensions

Vaibhav Kulkarni, Bertil Chapuis and Benoît Garbinato
{firstname.lastname}@unil.ch

Distributed Object Programming Laboratory
University of Lausanne, Switzerland

ABSTRACT
We are witnessing a rapid proliferation of location-based
services, due to the useful context-aware services they pro-
vide their users. However, sharing sensitive location traces
with untrusted service-providers has many privacy implica-
tions. Although, user-data monetization is the core eco-
nomic model of such services, offering private services to
concerned users will be a beneficial functionality in the com-
ing years. Existing solutions include location perturbation,
k-anonymity and cryptographic primitives that trade ser-
vice accuracy or latency for enhanced user privacy. We
introduce a novel approach for privacy preserving location-
based services by using the Intel Software Guard eXtensions
(SGX). We implement a simple location-based service using
SGX and gauge its performance in terms of efficiency and
effectiveness, in comparison with its bare-metal implemen-
tation. Our evaluation results show that SGX contributes a
marginal overhead but also provides near-to-the-perfect re-
sults in contrast to spatial cloaking with k-anonymity whose
performance deteriorates as the degree of desired privacy
increases. We show that hardware-based trusted execution-
environments are a promising alternative for offering proac-
tive and de-facto location-privacy in the context of location-
based services.

CCS Concepts
•Security and privacy → Privacy-preserving proto-
cols;

Keywords
Location privacy; Intel SGX; Privacy-preserving LBS

1. INTRODUCTION
The ubiquitous nature of mobile phones equipped with

internet connectivity and global positioning functionality
(GPS) has led to the widespread development of location-
based services (LBSs). Such services collect and store a
large amount of user-location data in the untrusted cloud,
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

HumanSys’17, November 5, 2017, Delft, Netherlands
c© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-5480-6/17/11. . . $15.00

DOI: https://doi.org/10.1145/3144730.3144739

Untrusted Service ProviderA
n
o

n
ym

o
u
s

c
o

m
m

.
n
e
tw

o
rk

1 Attestation

2
Query

3

LBS
User

Service

SGX Enclave

Data

Service

Client Result

Figure 1: Private-LBS: The client can verify the application se-
curity by performing attestation. The application and database
is embedded in the enclave. The query is encrypted, which can
only be decrypted and processed inside the enclave. The result
sent by the service-provider can only be decrypted by the client.
Thus ensuring end-to-end-to-service-provider encryption.

which exposes users to several privacy risks. Data breaches
and unlawful exchanges [2] can enable curious adversaries
to derive personally identifiable user information (PII) by
applying simple heuristics [6]. This information can be used
for blackmailing or stalking purposes [1]. Thus, user privacy
consideration will be a key factor in determining the success
and adoption of LBSs in the coming years.
Service provider’s (SP) application usually resides in the

cloud where the user data is processed to yield the desired
result. The SPs rely on virtual machines or containers to
insulate the underlying platform from the users and to offer
isolated execution. Although, such measures safeguard the
SPs against the users, the latter have to implicitly trust the
SPs and the execution platforms. Several solutions have
been proposed to address the privacy concerns in LBSs,
such as spatial cloaking [8], k-anonymity [7] and crypto-
graphic primitives [5]. However, such techniques are not
widely adopted in practice, either due to their low accuracy
or high latency.
We propose an architecture for Private-LBS, it relies on

Intel’s next generation hardware-based trusted execution-
environment called Intel SGX1. Intel SGX provides a re-
verse sandbox that enables independent software vendors to
run a software module on an untrusted cloud. It designates
a container that isolates the program and data from all the
other software, potentially malicious OSs and the hypervi-
sor. Furthermore, it offers a verification mechanism for au-
thenticating the remote hardware platform and its state. We
use these features to implement a Point-of-Interest Loca-
tor (POI-Locator) application that imposes anonymity and
indistinguishability to enforce user privacy. We quantify the
overheads involved in such a system, with respect to its bare-
1Intel SGX: https://software.intel.com/en-us/sgx

Application

untrusted
module

trusted
module

create
enclave

call trusted
function

execute return sys
calls

privileged system
code

BIOS, OS, VMMECall OCall OCall

sys calls

Figure 2: SGX application with trusted and untrusted modules

metal counterpart. We also compare its performance with
a popular hybrid location-perturbation algorithm: spatial
cloaking with k-anonymity. An architectural overview of
our system is depicted in Figure 1.
The remainder of the paper is organized as follows. We

discuss the background information necessary to illustrate
our system in Section 2 and, in Section 3, the related work on
location-privacy preservation is discussed. We present the
system design and architecture in Section 4 and the system
evaluation in Section 5. Finally, we conclude the paper is
Section 6.

2. BACKGROUND
In this section, we present the background information

regarding the features offered by Intel SGX. These features
are leveraged in our system design to offer private location-
based services.

2.1 Intel Software Guard eXtensions (SGX)
SGX is Intel’s new architecture extension for providing a

strong and provable isolation of binary code that runs con-
currently and shares resources. It enables an application to
construct protected regions of memory at a virtual address
space called enclave. The enclave can be created and de-
stroyed using certain privileged instructions. An application
code and the data can be embedded into the enclaves and
is ensured protection from the outside world. SGX provides
guarantees that no privileged software, even with the root
access, can view the contents of the enclave. Furthermore,
all the contents belonging to the enclave that lie outside the
enclave are encrypted. As an enclave has a limited size,
we can create multiple enclaves that are isolated from one
another and distribute data using shared keys.
As these features can also be used to create super mal-

ware, the enclave is prohibited from executing any privi-
leged instructions, including systems calls and I/O opera-
tions. Additionally, the enclave code can only run in the
user-mode and not in the kernel-mode. A typical SGX ap-
plication consists of two modules: the untrusted module
that executes security uncritical code and the trusted mod-
ule that executes critical code inside the enclave as shown
in Figure 2. These two modules communicate via two func-
tion calls: ECall (trusted) and OCall (untrusted). An ECall
function enters an enclave and the OCall leaves the enclave.
Therefore, an OCall is made every time the enclave wants
to execute a privileged instruction. Evoking an OCall trig-
gers the CPU to switch from the enclave mode to the user
mode. The switching results in a certain overhead and can
open up the enclave to various attacks. Thus, the OCalls for
I/O operations are only used during the enclave debugging
phase.
SGX also provides a remote attestation scheme to attest

to the security offered by the untrusted cloud-provider. This

Application
(untrusted part)

Application
Enclave
(trusted)

Quoting
Enclave

Client

Provisioning
Server

request
attestation

local
attestation

enclave
measure

get signed
attestation

Untrusted
Service Provider

12

3 4

Figure 3: Remote attestation procedure

feature enables a remote user to verify whether an applica-
tion is running inside a legitimate enclave and does not leak
any information, thus, leaving only the processor operation
and the security keys printed on the die to be trusted by the
user.

Memory Encryption. All the enclave data and code is
transparently encrypted in the memory by the SGXMemory
Encryption Engine (MEE). The MEE uses a combination of
Merkle trees and a 56-bit AES counter, producing a 128-bit
integrity key and a 512-bit universal hash key to encrypt the
enclave pages. The keys are generated at boot time and are
placed in the privileged MEE registers that are destroyed
at system reset. Thus, access to this protected memory re-
gion called Enclave Page Cache (EPC) is restricted at the
hardware level. The Enclave Page Cache Map (EPCM) re-
stricts the pages that the enclave is permitted to access in
the EPC. The MME therefore also protects the data in the
RAM from unauthorized access.

Remote Attestation. Typically, the clients have no as-
surance regarding the software running at the remote server.
To address this, SGX implements the remote attestation
mechanism that guarantees that the application is not tam-
pered with, and is transparent about how the private user
data is treated. Every enclave, when initialized, generates
a certificate containing its measurement, vendor ID, prod-
uct ID and other enclave attributes. The remote attestation
procedure is depicted in Figure 3. During the initialization
phase, the measurement of the enclave contents is taken by
performing a hash over its memory pages. First, the enclave
obtains a signed attestation for itself from a specific Intel
enclave, known as the quoting enclave, through a local at-
testation procedure. The attestation is performed over the
enclave’s measurement to create a report. The quoting en-
clave checks the report and generates a signed attestation
quote, that, intern is sent to the remote user.
When the remote user demands an attestation, a loader

process which connects to the Intel’s provisioning server is
initiated. The purpose of the service is to verify the signed
attestation quote of the enclave. Intel burns two secret keys
into the CPU: a provisioning secret burnt during manufac-
turing and a sealing secret burnt at the boot time. The pro-
visioning secret is shared with Intel for the attestation ser-
vice, whereas the latter is not accessible outside the CPU.
The provisioning service checks the key, derived from the
provisioning secret to attest the enclave. In the case of suc-
cessful attestation, a report is created and digitally signed,
attesting that the CPU is indeed running in a secure mode
where the memory is encrypted. The loader process now
sets up a secure channel to the provisioning server and can
download the intended software and data into the encrypted
RAM for execution. The software module and the data can
also be encrypted and saved to the disk. When the SGX-
enabled processor connects to the provisioning server via
the enclave, it also receives an attestation key, that can be

sealed and stored to create further attestations. This re-
duces the entities to be trusted to only Intel’s remote at-
testation service, as all other infrastructure is locked out by
the encryption.

Sealing. As discussed above, when the enclave is in-
stantiated, the MEE provides the data integrity and con-
fidentiality. However, the enclaves are stateless, i.e., upon
terminating the enclave process, the data stored within the
enclave will be lost. Sealing is a special feature provided in
order to store data outside the enclave, if the data is meant
to be re-used at a later stage. When invoked, the data is
sealed using persistent sealing keys derived from the CPU
to encrypt and integrity-protect the data. The sealed data
block can be unsealed either by the enclave that sealed it
or by the software vendor, depending on the key used for
sealing. This ensures the confidentiality, integrity and au-
thenticity of the data.

2.2 SGX in Practice
SGX has been used to enforce privacy in the smart-grid

infrastructure, to secure the energy consumption traces of
users [12]. Here, to perform analyses over the user data,
SGX is used as an intermediary entity between the smart
metering devices and the SP. Only the meta records cre-
ated by the intermediary entity are then sent to the SP
for billing purposes. The security features offered by SGX
have also been used to implement a content-based routing
(CBR) engine inside the enclave [16]. CBR is not very pop-
ular as it necessitates routers to view the data in plain-text,
which poses security threats. However, when message fil-
tering is performed inside the enclave, the routers remain
oblivious to the messages. [9] uses SGX to make secure
two-party function evaluation more efficient as compared to
traditional cryptographic operations that are too slow for
practical applications. Along similar lines, [15] proposes the
use of SGX for providing privacy guarantees for MapReduce
operations. In all the above applications, it was found that
porting the applications inside the SGX enclaves results in a
superior performance compared to the cryptographic mech-
anisms. These results motivated us to exploit the privacy
guarantees offered by SGX and apply it to a domain where
privacy is of extreme importance: LBSs.

3. PRESERVING LOCATION PRIVACY
Research efforts in the domain of location-privacy preser-

vation have been focused on enforcing two key principles:
anonymity and indistinguishability. Anonymity is essen-
tially decoupling the user identity from the location-traces so
that the SP cannot link a location to a particular user. Indis-
tinguishability prohibits the SP from distinguishing between
the actual and fake locations sent by a user. In this section,
we discuss the related work on location-privacy preservation
in the context of LBSs.
A technique called spatial cloaking [8] was devised to per-

turbate the user’s true locations. Here, an intermediary lo-
cation broker is used, which transforms the actual user lo-
cation along the spatial and temporal dimensions to satisfy
certain anonymity constraints. The query containing the
perturbed location is then sent to the SP, thus protecting
the users identity and the location. Another commonly used
mechanism for protecting user identity is called spatial-k-
anonymity [7]. In this case, an intermediary server replaces
the location of a user with a location lying in an anonymizing

region consisting of at least k-1 other users. This makes the
probability of attacking a certain user at most 1/k. Such ap-
proaches dependent on an intermediary trusted-entity have
several disadvantages, such as bottlenecks in communica-
tion and a single point of failure because all the sensitive
user information is stored at a single central entity.
In order to address these limitations, decentralized ap-

proaches have been devised; they exploit the peer-to-peer
network to eliminate the dependency on an intermediary
trusted server. Here, the participating users form a peer
group that is used to route their queries to the SP [4]. Peers
are selected at random to forward the location traces. An-
other common technique is to send dummy locations, along
with a true location, to enforce indistinguishability [11]. In
the above cases, the extent of privacy protection and LBS
accuracy is dependent upon the population and road den-
sity in the vicinity of a user’s location. [14] solves the above
problem by first projecting the 2-D location coordinate onto
a Hilbert curve. Homogeneous noise is then added to the
points on the curve to perturb the true user locations. The
perturbed points are projected back to the 2-D space be-
fore sending them to the SP. The results show higher LBS
accuracy and privacy guarantees compared to conventional
location-privacy techniques. However, the dimensionality
reduction and perturbation process leads to an increased
latency.
Cryptographic techniques relying on homomorphic encryp-

tion are also used to access LBSs without directly reveal-
ing the location traces [5]. [17] proposes an efficient spa-
tial range query algorithm over ciphertext; it protects user’s
query privacy and LBS data confidentiality in an outsourced
cloud. Similar to the previous work, [13] enables different
levels of queries on encrypted location traces, with the added
benefits to operate on a mobile phone. Although the above
contributions guarantee a high level of LBS accuracy, they
involve a high latency and complexity due to the operations
performed on ciphertexts. As the SGX based solution does
not demand location perturbation or computing on cipher-
text, it is implicitly more efficient than the existing solutions,
and provides highly accurate services.

4. SYSTEM DESCRIPTION
In this section, we present our system model, the adver-

sary model and the protocol design.

4.1 System Model
Our system model consists of the following three entities.
• The Client is the end user having a subscription to the
LBS. In our application, the client sends her current
location to the POI-Locator service provider to receive
information regarding the nearby (user-configurable dis-
tance) points of interest (POI) that can include restau-
rants, pubs, cafes, gas stations etc.
• The Service Provider receives the client’s current
location, computes the nearby points of interest using
a local database and returns the result back to the
client. The result should include the name and cate-
gory of the place, address and distance from the user’s
current location.
• The Infrastructure Provider hosts the POI-Locator
application and provides the SGX-based machine to
run the service provider’s application: for example, a
public cloud platform offering cloud services.

LBS
User

Third-party
analytic
services

Hardware

Hypervisor

OS

Container
App

malicious
container

malicious OS

malicious hypervior
malicious firmware

DMA/compromised peripheral

physical DRAM r/w

channel
intercept

channel
intercept

replay
attack

Client Untrusted

App XPOI-Locator

malicious App
Untrusted Service Provider

Figure 4: Adversary Model

4.2 Adversary Model
Considering the above system model, the adversaries from

the client’s perspective are both the SP and the infrastruc-
ture provider (IP). We also assume that the SP does not
trust the IP. Hence essentially, the SP wants to keep its
code confidential and the client wants to keep her location-
coordinates private.
The hardware platform and the system software running

at the client’s end are assumed to be trusted. The IP is
treated as untrusted and malicious or compromised, capa-
ble of executing any arbitrary software or modifying the OS
or the bootloader. The attacker is assumed to be able to
control all the privileged software, including the hypervisor,
firmware and the entire management stack. As the resources
in a public cloud domain might be shared amongst multiple
SPs, we also assume that all the other services/applications
running at the IP’s end are malicious. The IP administrators
are not trusted and are assumed to be curious or malicious.
The SP is assumed to be honest but curious, i.e. the ap-
plication always computes and returns correct results to its
clients, however they can use the information regarding a
user’s identity and/or location traces for any kinds of ac-
tivities. The SPs can also leverage analytical services from
other third party entities such as Azure2. We also assume
that such services are honest but curious.

Attack Description
Denial of Service Host machine physically taken off the network
Port attack Malicious software running via the debug ports
Bus tapping attack Tap motherboard bus’s to track or modify traffic
Chip attack Power and timing analysis to reverse engineer code
Side channel attack Reverse engineering via performance monitoring
Cache timing attack Learn correlation between memory access & time
Microcode attacks Reprogram the machine code functionality

Table 1: SGX is vulnerable against above hardware attacks

We also consider that the processors equipped with the
SGX functionality are to be trusted and an attacker is not
capable to physically tamper with them. Figure 4 shows the
possible attacks considered by our system. SGX provides
implicit protection against the attacks marked in green but
not those marked in red. Table 1 shows a detailed list of
hardware attacks, against which SGX does not offer implicit
protection. We do not consider these attacks, as they require
physical access to the hardware, which is easier to detect in
most cases.

4.3 System Design
Our system and protocol design focuses on the compu-

tation and communication security between all the entities
involved.

2Microsoft Azure: azure.microsoft.com

S
er

vi
ce

 P
ro

vi
de

r

In
fra

st
ru

ct
ur

e
P

ro
vi

de
r EncK(Ac)Sc,

PKsgx, EncPKsgx(MSc)

EncPKsgx(K)

EncK(DBPOI)

Subscription

Remote Attestation

PKsgx

Enckey, i((lat,lon))

Enckey, j(Result)

Application setup Application delivery

C
lie

nt

Figure 5: Communication protocol in POI-Locator

4.3.1 Application Setup Phase
In order to setup and launch the POI-Locator application,

the SP first transfers a setup code, Sc to the IP. Sc is not
confidential and can be sent in plain text. Next, the appli-
cation code, Ac is encrypted with a confidential key, K and
sent to the IP. Upon reception, IP will setup and instanti-
ate an enclave and run the Sc. After running the Sc, a log
called enclave’s measurement, MSc is created, which attests
that Sc is running in isolation within a legitimate enclave.
This log is encrypted using the public key of the SGX core,
PKsgx and sent to the SP. The SP verifies the log with
the provisioning server and sends the key K encrypted with
PKsgx back to the IP. After receiving the K, Sc can de-
crypt Ac and can initiate the application inside the enclave.
The interaction between the SP and the IP is depicted in
Figure 5.
Next, the database file containing the POI’s is sent to the

IP, encrypted with K. This file is later decrypted inside the
enclave and is sealed using the enclaves TweetNaCl keypair3.

4.3.2 Service Provisioning
Once the service is running, and before serving the clients

the enclave generates TweetNaCl keypairs . Upon the suc-
cessful generation of keypairs, the enclave outputs a public
key that is provided to the client after subscribing to the
service. This key can be used by the client to encrypt the
requests and authenticate the results.
First, the client runs the remote attestation service to ver-

ify that the SP is running the promised program securely.
The client views it as a public-key certificate, where the SP,
along with the Intel provisioning server, endorses the appli-
cation. After this step, both the parties have the enclave
public key, PKsgx. We rely on the SGX re-encrypt4 mech-
anism to establish a secure communication protocol between
the client and the SP. In order to gain access to the service,
the client sends a request with the current location and range
encrypted with a key ID, i. Along with this message, the
client also sends a key ID, j: it is the encryption key ID of
the result to be returned by the SP.
The SP receives the request and decrypts the ciphertext

using the key ID, i, providing the user location coordinates
(lat, lon) and the range. The application then retrieves all
the POI’s lying within the range of the user’s location, en-
crypts it using the key ID j and sends the result to the
client. To view the result, the client decrypts the it using
the the key j. All the plaintexts are encrypted using AES-
GCM with 128-bit keys5 and elliptic curve schemes over
p256, which provides 128-bit security. In order to preserve
anonymity, we rely on the anonymous routing component,
3TweetNaCl: https://tweetnacl.cr.yp.to/
4SGX re-encrypt: github.com/kudelskisecurity/sgx-reencrypt
5AES-GCM: tools.ietf.org/html/rfc5084

Enclave Task Execution Time Enclave Task Execution Time

Create 22.41µsec Copy
(128 Bytes) 0.155µsec

Entry 0.752µsec Seal
(128 Bytes) 0.137µsec

Exit 0.631µsec Keypair 13.445µsec
Encrypt

(128 Bytes) 0.0154µsec Hash
(128 Bytes) 0.264µsec

Token 24.9944µsec Quote 15.39µsec

Table 2: Micro-benchmarks of enclave tasks

Tor6 at the client’s end. This is simply achieved by us-
ing a Onion Proxy mobile client 7 to connect to the service
provider; this mobile client uses a type of source routing to
achieve communication anonymity between the client and
the SP.

5. EVALUATION AND RESULTS
To evaluate the system performance, we base our results

on a database of points of interest in Switzerland retrieved
from the Open Street Maps8. Our implementation is run
on a 64-bit, Intel 4-Core i5-7500 CPU clocking at 3.40GHz
and running Ubuntu-16.04. We use the Linux 2016-06 SGX
SDK9, and the Enclave Page Cache was set to the maximum
available size of 128 MB.

5.1 Benchmarking SGX Overhead
In order to quantify the overhead involved due to the

SGX, we benchmark the latency of basic enclave operations.
The execution time of enclave creation, enclave entry and
exit (ECall and OCall), encryption, generating the keypairs,
measurements and tokens, copying and sealing data is shown
in Table 2. All the results are derived after taking into ac-
count the average and variance over 100 runs. We rely on
SGX-log [10] to implement and quantify the latency of the
micro-benchmarks.
The latency due to the enclave creation, copying and seal-

ing is a one time cost involved during the service initializa-
tion phase. Every new client also has to bear the initiation
cost of retrieving the measurement quote and generating the
SGX public keypair. The other tasks, such as encryption,
ECalls and OCalls, are recurring costs and contribute to the
core of the overhead involved due to the SGX.

5.2 Bare-Metal Comparison
Here, we compare the overhead contributed by the SGX

to the bare-metal implementation of the same application.
We select a random coordinate lying within the POI dataset
and select a range of 1000 meters in the query. These two
parameters are kept constant for this evaluation. We quan-
tify the overhead in terms of number of total instructions
executed as the size of the POI-dataset increases, as shown
in Figure 6. SGX results in a modest 10-12% rise in the
number of total executed instructions. A majority of these
additional instructions result due to transferring the exe-
cution between the enclave and the non-enclave modules.
More specifically, the OCalls that the enclave has to initi-
ate in order to execute system calls. Additional overhead is
contributed by the instructions that need to be executed to
encrypt and decrypt the array that contains the result and
6TOR Proxy: www.torproject.org
7Onion Proxy: www.torproject.org/docs/android.html.en
8OSM Switzerland: planet.osm.ch
9Linux SGX-SDK: https://github.com/01org/linux-sgx

Figure 6: Comparison of number of total instructions executed

the user’s location. However, these costs are marginal and
do not lead to noticeable service delays.

5.3 Precision Comparison
Next, we compare our SGX-based approach to a popular

location-privacy preserving technique: spatial cloaking with
k-anonymity. The central idea of cloaking is to perturbate
and anonymize the user’s true location by creating cloaked
regions. Spatial cloaking typically requires a trusted third
party, called a location anonymizer, responsible for generat-
ing the cloaked regions. The anonymizer has to ensure that
the cloaked region contains the number of users greater than
or equal to k. Here, k refers to a privacy parameter that can
be chosen by the user and corresponds to the desired degree
of privacy.

true location

other users

original query area

cloaked query area
d

quad tree

Figure 7: Spatial cloaking with k-anonymity

The POI-Locator application can be queried with a lo-
cation and a desired range. Hence, for comparison, we as-
sume a scenario wherein a set of queries are performed by
different users who lie within the POI-dataset range. The
cloaking implementation for this experiment is based on a
simple spatial perturbation with k-anonymity technique de-
scribed in [8]. The algorithm first indexes the locations of
all the users in a quadtree. Given the location of a user,
it then searches for the first cell that contains this location
and less than k queries. The parent of this cell is guaranteed
to contain a number of queries greater than or equal to k
and is returned as the cloaked region. The algorithm then
computes a new range by adding the distance between the
initial location and the center of the cloaked region, d to
the initial range specified by the user as shown in Figure 7.
Thus, the center of the cloaked region and the cloaked range
is used to send the query to the SP. The anonymizer does a
good job at cloaking the user-location and range, however,
this comes at a great cost in terms of precision.
In Figure 8, we show the relationship between the ac-

tual user query range and the cloaked query range as k
increases. We consider three query ranges: 100, 500 and
1000 meters and as seen, the difference between the two sig-

Figure 8: Relationship between query to clock range with k

nificantly increases with k and leads to imprecise results.
Furthermore, we observe in Figure 9 that as the privacy
requirement (k) increases the precision lowers significantly
with different query ranges. In this case, we define precision
as the ratio between the number of POI’s lying within the
original range specified by the user from her true location
(true positives) to the number of POI’s retrieved by the SP
(true positives + false positives). Note that measuring the
effect of cloaking on recall is not relevant because the orig-
inal queries and the cloaked queries return all the relevant
results.
In conclusion, an approach based on SGX presents a clear

advantage over an approach based on spatial cloaking with
k-anonymity. Low precision has a great impact on the num-
ber of results returned by the LBS. This translates to higher
computational and bandwidth requirements. In contrast,
being able to return highly precise results, and guarantee-
ing privacy can make the LBS much more efficient.

6. CONCLUSION AND FUTURE WORK
In this paper, we have demonstrated the applicability of

a hardware-based trusted execution-environment, i.e. Intel
SGX to offer a privacy preserving location-based service.
We implement a POI-Locator application using the security
guarantees offered by SGX, adopting a privacy-by-design
principle. We quantify the overheads involved due to the
SGX implementation and compare it with the bare-metal
execution. We show that SGX-based approach leads to a
marginal overhead and provides near-to-the-perfect results.
We experimentally show that SGX is a better alternative
compared to popular location-privacy preserving approach:
spatial-cloaking with k-anonymity, which has a detrimental
impact on the precision as the degree of privacy increases.
Our current work, focuses on safeguarding only the user

from the service provider. However, the user can retrieve
the complete dataset from the service providers by submit-
ting a large number of queries. This is critical when the
services provider hosts a privacy-sensitive database. Our
future work will address this issue in order to guarantee the
privacy of both the parties involved. Furthermore, we will
perform a complete evaluation of the SGX-based service, in-
cluding the memory efficiency, responsiveness and usability
to the clients, the number of simultaneous queries that can
be handled and the network performance. We will also com-
pare this approach with other well-known privacy-preserving
approaches such as Private Information Retrieval (PIR) [3],
in terms of accuracy and overheads.

Figure 9: Relationship between the result precision and k

Acknowledgement: This work is partially supported by
the Swiss National Science Foundation grant 146714.

7. REFERENCES
[1] Uber privacy. www.usatoday.com/story/tech/2014/11/19/

uber-privacy-tracking/19285481/.
[2] Uber starwood. www.forbes.com/sites/ronhirson/2015/03/23/

uber-the-big-data-company/#4af73b4118c7.
[3] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private

information retrieval. In FOCS, 1995.
[4] C.-Y. Chow, M. F. Mokbel, and X. Liu. A peer-to-peer spatial

cloaking algorithm for anonymous location-based service. In
GIS, 2006.

[5] Y. Gahi, M. Guennoun, Z. Guennoun, and K. El-Khatib.
Privacy preserving scheme for location-based services. J.
Information Security, 3:105–112, 2012.

[6] S. Gambs, M.-O. Killijian, and M. N. del Prado Cortez. Show
me how you move and i will tell you who you are. In
SPRINGL, 2010.

[7] B. Gedik and L. Liu. Protecting location privacy with
personalized k-anonymity: Architecture and algorithms. IEEE
Transactions on Mobile Computing, 7:1–18, 2008.

[8] M. Gruteser and D. Grunwald. Anonymous usage of
location-based services through spatial and temporal cloaking.
In Proceedings of the 1st international conference on Mobile
systems, applications and services, pages 31–42. ACM, 2003.

[9] D. Gupta, B. Mood, J. Feigenbaum, K. Butler, and P. Traynor.
Using intel software guard extensions for efficient two-party
secure function evaluation. In International Conference on
Financial Cryptography and Data Security, pages 302–318.
Springer, 2016.

[10] V. Karande, E. Bauman, Z. Lin, and L. Khan. Sgx-log:
Securing system logs with sgx. In AsiaCCS, 2017.

[11] H. Kido, Y. Yanagisawa, and T. Satoh. Protection of location
privacy using dummies for location-based services. 21st
International Conference on Data Engineering Workshops
(ICDEW’05), pages 1248–1248, 2005.

[12] K. A. Küçük, A. Paverd, A. Martin, N. Asokan, A. Simpson,
and R. Ankele. Exploring the use of intel sgx for secure
many-party applications. In Proceedings of the 1st Workshop
on System Software for Trusted Execution, SysTEX ’16, pages
5:1–5:6, New York, NY, USA, 2016. ACM.

[13] X.-Y. Li and T. Jung. Search me if you can: privacy-preserving
location query service. In INFOCOM, 2013 Proceedings IEEE,
pages 2760–2768. IEEE, 2013.

[14] A. Pingley, W. Yu, N. Zhang, X. Fu, and W. Zhao. A
context-aware scheme for privacy-preserving location-based
services. Computer Networks, 56(11):2551–2568, 2012.

[15] R. Pires, D. Gavril, P. Felber, E. Onica, and M. Pasin. A
lightweight mapreduce framework for secure processing with
sgx. In Proceedings of the 17th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing, pages
1100–1107. IEEE Press, 2017.

[16] R. Pires, M. Pasin, P. Felber, and C. Fetzer. Secure
content-based routing using intel software guard extensions. In
Middleware, 2016.

[17] H. Zhu, R. Lu, C. Huang, L. Chen, and H. Li. An efficient
privacy-preserving location-based services query scheme in
outsourced cloud. IEEE Transactions on Vehicular
Technology, 65(9):7729–7739, 2016.

