
A Horizontally Scalable and Reliable Architecture
for Location-based Publish-Subscribe
Bertil Chapuis

Université de Lausanne
bertil.chapuis@unil.ch

Benoı̂t Garbinato
Université de Lausanne

benoı̂t.garbinato@unil.ch

Lucas Mourot
EPFL

lucas.mourot@epfl.ch

Abstract—With billions of connected users and objects,
location-based services face a massive scalability challenge. We
propose a horizontally-scalable and reliable location-based pub-
lish/subscribe architecture that can be deployed on a cluster
made of commodity hardware. As many modern location-based
publish/subscribe systems, our architecture supports moving pub-
lishers, as well as moving subscribers. When a publication moves
in the range of a subscription, the owner of this subscription is
instantly notified via a server-initiated event, usually in the form
of a push notification. To achieve this, most existing solutions
rely on classic indexing data structures, such as R-trees, and
they struggle at scaling beyond the scope of a single computing
unit. Our architecture introduces a multi-step routing mecha-
nism that, to achieve horizontal scalability, efficiently combines
range partitioning, consistent hashing and a min-wise hashing
agreement. In case of node failure, an active replication strategy
ensures a reliable delivery of publication throughout the multistep
routing mechanism. From an algorithmic perspective, we show
that the number of messages required to compute a match is
optimal in the execution model we consider and that the number
of routing steps is constant. Using experimental results, we show
that our method achieves high throughput, low latency and scales
horizontally. For example, with a cluster made of 200 nodes,
our architecture can process up to 190’000 location updates per
second for a fleet of nearly 1’900’000 moving entities, producing
more than 130’000 matches per second.

Index Terms—Internet of Things; Publish subscribe systems;
Distributed databases; Spatial databases; Scalability; Fault tol-
erance

I. INTRODUCTION

Today, moving objects and moving users produce massive
amounts of geo-located data. For example, it is now common
for cellular network operators and data analytics companies to
collect up to several millions of geographical data points per
seconds. Furthermore, this trend is not likely to stop: according
to Gartner and IDC,1 there will be between 25 to 30 billion
connected objects by 2020. The emergence of this ecosystem
of connected objects, known as the Internet of Things (IoT),
opens new opportunities, but also comes with new challenges
in terms of development and deployment.

A. Location-Based Publish-Subscribe
Here the location-based publish-subscribe paradigm is of

particular interest for developing mobile applications that
want to take advantage of the IoT ecosystem. With this

1 http://www.gartner.com/newsroom/id/3165317
https://www.idc.com/getdoc.jsp?containerId=US40755816

communication paradigm, connected objects are able to issue
publications and subscriptions that are geographically scoped
and that move with them. The scope of a publication or a
subscription is known as its space. A match occurs between
a given publication and a given subscription if both a content
criterion and a context criterion are met simultaneously. The
content criterion expresses a semantic relationship between
the publication and the subscription, as captured by traditional
publish-subscribe systems such as the Java Messaging Service
API.2 The context criterion then expresses some proximity
condition between the publication space and subscription
space, hence the term location-based or sometimes location-
aware publish-subscribe [6], [16].

The location-based publish-subscribe paradigm is of great
interest for any mobile application that requires a precise and
up-to-date knowledge of the context of its users. Therefore, it
could be used to improve user experience in various domains
including social networking, transportation, video game, and
augmented reality. Although this communication paradigm
offers great expressiveness and flexibility, scaling its imple-
mentation to billions of objects is far from trivial. As of
today, location-based publish/subscribe solutions described in
the literature have addressed the scalability problem vertically,
i.e., with a centralized computing unit responsible for the full
workload. Obviously, the vertical scalability approach can only
work up to a certain load, that the exponential growth of the
IoT ecosystem can easily exceed.

B. Achieving Horizontal Scalability

The traditional centralized spatial indexing approaches men-
tioned above aim at taking advantage of high stability in
geographical locality (because most objects, such as buildings,
shops, landmarks, etc., are not moving), via tree-like data
structures. Indeed, such approaches are known to be efficient
in contexts where the majority of indexed objects fit on a
single machine and are static, i.e., when reads on the index
greatly outnumber writes. Keeping the underlying tree-based
data structures balanced can be very costly in the presence of
numerous writes. Therefore, in order to support a large number
of moving objects we need to scale out.

Yet to our knowledge, while many efficient spatial data-
structures have been proposed to accelerate the computation of

2 https://jcp.org/en/jsr/detail?id=368

matches between moving publishers and moving subscribers,
such as variants of R-trees for instance, the problem has not
yet been addressed in terms of horizontal scalability, i.e, with
many distributed computing units, each one being responsible
for only a part of the workload. Here, we consider the problem
of horizontally scaling the location-based publish/subscribe
communication paradigm. Our starting point consists in frag-
menting locality using the notions of range partitioning, in
conjunction with consistent-hashing, in order to dynamically
distribute the computation of the matches.

C. Contributions & Roadmap
Our key contributions are organized as follows.

1) In Section II, we describe a model for reasoning about
the location-based publish/subscribe paradigm in a dis-
tributed context and we introduce the problem of scaling
out systems supporting this paradigm.

2) In Section III, we introduce a scalable and reliable
location-based publish/subscribe architecture. This archi-
tecture scales horizontally due to the counter-intuitive
idea that selectively fragmenting locality with a combi-
nation of range partitioning, consistent hashing and an a
priori min-wise hashing agreement can help us compute
matches efficiently. In addition, an active replication
strategy makes this distributed architecture tolerant to
node failures.

3) In Sections IV and V, we evaluate our solution both
theoretically and experimentally. For the latter, we im-
plement and evaluate our protocol on a real cluster setup
and highlight its performances in terms of horizontal
scalability, throughput and latency.

We then conclude this paper by discussing related work in
Section VI and future research opportunities in Section VII.

II. SCALING LOCATION-BASED PUBLISH-SUBSCRIBE

We consider a distributed system composed of mobile client
nodes, that represent computing devices moving in the field,
and of fixed server nodes that represent computing resources
in some data center.

A. Client-Side Model
On the client side, mobile nodes can issue long-lived

geographically-scoped publications and subscriptions that
move with their issuers. Formally, a publication pub is defined
as tuple pub = (id,Z,A), where id 2N uniquely identifies pub,
Z 2 Z denotes the geographical zone3 where pub is active
and set A = {a1,a2, . . . ,a|A|} denotes a collection of attributes
of the form a = (name,value). In other words, A defines the
content of pub, whereas Z defines its context. Similarly, a
subscription sub is defined as tuple sub = (id,Z,A, issuer),
where issuer uniquely identifies the mobile client node that
issued sub. As publications and subscriptions move with their
issuers, the geographical boundaries where they are active
are also moving. Therefore, given a moving subscription sub

3Here Z denotes the set of all zones definable on the earth surface.

pub1

sub1

pub2

Fig. 1: Example of location match

and a moving publication pub, we say that a match occurs
when the following two conditions are met: sub.Z\ pub.Z 6=?
and sub.A ✓ pub.A. When such a match occurs, the mobile
node that issued sub is notified by asynchronously receiving
a tuple (pub,sub). It is worth noting that every time a
publication moves within the range of a matching subscription,
the subscription’s issuer will receive an update.

Intuitively, the first condition captures the fact that the
geographical zones of pub and sub overlap; this is known
as a context match or a location match. Figure 1 depicts two
publications pub1 and pub2 and a subscription sub1 that only
matches with pub2 in terms of location. The second condition
captures the fact that publication pub contains at least all the
attributes of subscription sub; this is known as a content match.

The above client-side model is similar to the one used
in [16]. There exists of course many alternative ways to
define the notion of content match, but this is out of scope
here: in this paper, we focus exclusively on location matches.
Similarly, we could define the notion of location match by
using an alternative proximity criterion but, as we will see,
this would not affect the generality of our approach.

B. Server-Side Model

On the server side, fixed server nodes consist in inter-
connected virtual or physical nodes running on commodity
hardware and organised as a cluster in some data centers. In
this paper, we consider a set of distributed processes P =
{p1, p2, · · · , p|P|} running on server nodes. Furthermore, we
assume that processes in P know each other and communicate
by reliably exchanging uniquely identified messages.

C. Scaling horizontally

Using the above client-side and server-side models, we can
now specify the horizontal scalability problem. We begin by
defining how the two models work together, i.e., how nodes
on one side communicate with nodes on the other side.

When a client-side mobile node wants to issue a new
publication or a new subscription, or when it moves and hence
needs to update the geographical zones associated with its
existing publications and subscriptions, it sends messages to
the cluster. The latter is responsible for computing the matches
that are then sent back to the mobiles nodes that issued the
subscriptions concerned by those matches. It is worth noting

that mobile nodes never communicate directly with each others
but always do so via cluster nodes.

Here, we address the problem of distributing the computa-
tion of matches among cluster nodes in a way that enables
the overall system to scale horizontally. That is, we want
to answer the following question: How can we organize the
work of server-side nodes so that by simply adding new nodes
to the cluster, we can manage a growing number of moving
publications and subscriptions, while maintaining low latency
in term of match computation and delivery?

III. A HORIZONTALLY SCALABLE AND RELIABLE
ARCHITECTURE

In this section, we describe a horizontally scalable archi-
tecture that supports the location-based publish and subscribe
communication paradigm. In contrast to traditional centralized
spatial data structures that aim at taking advantage of geo-
graphical locality, our solution fragments locality by using the
notions of range partitioning, in conjunction with consistent-
hashing, in order to dynamically distribute the computation of
matches across sets of processes.

A. Range Partitioning

Map services such as Google Maps4 or Mapbox5 typically
rely on a grid layout that divides the world into a set of tiles.
In this paper, we use tiles to create range partitions along
two dimensions. We then use these partitions to distribute
the computation of context matches between publications and
subscriptions among processes running in our cluster. For this,
we introduce set G = {t1, t2, . . . , t|G|}: it denotes a grid layout
on the earth surface consisting in a set of uniquely identified
tiles. In addition, we introduce function tiles : Z ! 2G that
maps a geographical zone Z 2Z to its overlapping set of tiles
TZ ✓ G, i.e., we have TZ = {t 2 G | t \Z 6= ?}.

Figure 2 illustrates how the tiles function is used to deter-
mine the sets of tiles overlapping with the publications and
subscription depicted in Figure 1. Obviously, rectangle-based
grids rely on a map projection, which is necessary for mapping
coordinates on a sphere to coordinates on a plane. Such map
projections are known to introduce spatial distortions that
result in the tiles being not uniform in terms of shape and
size. However, as in our context tiles are used as units of
distribution and parallelism, these distortions have virtually
no effect on performance.

B. Consistent Hashing

Distributed hash tables typically rely on a family of func-
tions that offers consistent hashing in order to partition data
items across a cluster of processes and to scale horizontally. In
other words, the unique identifier of each data item is passed
to a consistent hashing function and the resulting hash value
is then used to find the process responsible for handling that
particular data item.

4https://maps.google.com
5https://www.mapbox.com

t1 t2 t3

t4 t5 t6

tiles(sub1.Z) = {t2, t3, t5, t6}

tiles(pub2.Z) = {t1, t4}

tiles(pub1.Z) = {t3, t6}

pub2

sub1

pub1
tiles(pub1.Z ⋂ sub1.Z) = {t3, t6}

h1(tiles(pub1.Z ⋂ sub1.Z)) = t3

Fig. 2: Example of using the tiles function

p1

p2

p3

p4

p5

p6

p7

p8

F(i1.id) = p3

If hashing the identifier of item i1
gives a placement value in the range
of process p2 and p3, then p3 is
responsible for item i1.

� = {p1, p2, p3, p4, p5, p6, p7, p8}

Fig. 3: Distributing data items across processes in a ring

Formally, consistent hashing can be expressed as func-
tion F : I ! P that distributes a set of data items
I = {i1, i2, . . . , i|I|} across a set of processes P. As illustrated
in Figure 3, it is common to think about consistent hashing as
a ring in which the largest possible hash value convolutes to
the smallest possible hash value [5]. Each process is assigned
a fixed position on the ring, for example by hashing the
unique identifier of that process. In order to find the process
responsible for handing a given item, the identifier of that item
is hashed, then the first process on the ring with a placement
value greater than the resulting hash value is selected. Here the
monotonicity of F is particularly interesting as it ensures that
when processes are added or deleted, the distribution of items
across existing processes does not change [14]. However, as
illustrated in Figure 3, positioning processes by hash values
can lead to a non-uniform distribution of the load on the ring.
As a consequence, we rely on a notion similar to the ”virtual
nodes” used by Dynamo [5]. When processes are added to the
system, each of them receives multiple positions in the ring,
improving the uniformity of the load distribution.

C. Min-wise Hashing Agreement
Our architecture relies on the tiling of the earth’s surface

and on a set of consistent hashing functions to partition and
distribute the load of computing matches between publications
and subscriptions. That is, the subdivision of the earth’s surface
into tiles is used as a range partitioning criteria, whereas
consistent hashing functions are responsible for distributing the
load by routing messages to processes. As depicted in Figure 2,
a problem occurs when the boundaries of a publication or a
subscription overlap with several tiles. In such a case, the same
match will be computed on several tiles, here t3 and t6, result-
ing in duplicated messages. A straightforward solution would

Publisher

Subscriber

State
Manager

State
Manager

Tile
Manager

Frontend

Frontend
➀ ➁

➂

➃

➄

➅

➆

➇

FS(pub.id)

FS(sub.id)

FT (tile.id)

pub

sub
FT (tile.id)

match

tile = Hmin(tiles(pub1.Z \ sub1.Z))

Fig. 4: Overview of a Match Triggering Graph

be to address this issue with an a posteriori agreement, i.e, an
centralised process for identifying and eliminating duplicates.
However, such a solution would have several disadvantages:
First, the detection of duplicates by using a list or a set in
an unbounded message stream is not practical due to mem-
ory constraints; second, when publications and subscriptions
overlap with many tiles, the amount of duplicated messages
transmitted in the cluster might result in network congestion.

To avoid these problems completely, we present an efficient
a priori min-wise hashing agreement that does not require a
centralized coordination. As illustrated in Figure 2, both tiles
t3 and t6 identify the intersection between pub1 and sub1 and
trigger a match. Hence, by computing the set tiles(pub1.Z \
sub1.Z), each tile is able to infer which other tile will compute
the exact same match. Given this fact, a convention can be
used to determine which tile is responsible for sending the
match to the end user. Let H be a hash function that maps
tiles to distinct integers. Given any set of tiles T , we define
Hmin(T) to be the tile t 2 T with the minimum hash value.
On this basis, the a priori min-wise hashing agreement can
be expressed with one condition: given any tile overlapped
by both pub1 and sub1, a tile transmit the match to the end
user only if the condition tile = Hmin(tiles(pub1.Z\ sub1.Z))
is satisfied.

D. Detailed Architecture and Algorithms
In this section, we provide a more detailed description of

the internals of our architecture.
Process roles. When participating in match computation,
processes can have one of the three roles described hereafter.
When new nodes are added to the cluster to scale out, one or
more processes of each role can be started.

1) The Frontend role characterizes the set of processes
PF ✓ P responsible for handling and routing publication
and subscription requests in the cluster.

2) The State Manager role characterizes the set of processes
PS ✓ P responsible for tracking and managing the state
of publications and subscription in the cluster,

3) The Tile Manager role characterizes the set of processes
PT ✓ P responsible for computing matches between
publications and subscriptions that overlap with a specific
set of tiles.

Match Triggering Graph. Figure 4 gives an overview of
how the aforementioned concepts all play together. We use

the term Match Triggering Graph when referring to the graph
that contains all the paths of the messages that lead to a match.
In other words, a Match Triggering Graph corresponds to
the paths that link a State Manager process responsible for
a particular publication, a State Manager process responsible
for an overlapping subscription and the Tile Manager process
that computes a match for this publication/subscription pair.
Message routing. Messages are routed across processes by
using the two distinct consistent hashing functions:

1) Function FS : N!PS routes messages to State Manager
processes by hashing publications and subscription iden-
tifiers id 2 N.

2) Function FT : N!PT routes messages to Tile Manager
processes by hashing tile identifiers tile.id 2 N.

Figure 5 illustrates in more details how publications, sub-
scriptions and matches are routed in the cluster. In Figure 5a,
the publication is first routed from a Frontend process to a
State Manager process. The State Manager is responsible for
identifying and notifying the tiles that overlap the geographical
zone of a publication. Why is this intermediary step between
Frontend processes and Tile Manager processes necessary?
When the location of a publication is updated, it might enter
some tiles and leave some others. As a consequence, it is nec-
essary to have a process responsible for tracking the state of a
publication in the cluster and notifying Tile Manager processes
in a consistent manner. In Figure 5b, a similar routing scenario
is depicted for subscriptions. As depicted in Figure 5c, the
same match can be computed by several Tile Manager pro-
cesses. However, only one of these process satisfies the min-
wise hashing condition tile = Hmin(tiles(pub1.Z\sub1.Z)) and
transmits the match to the subscriber. Consequently, the archi-
tecture requires no intermediary step for eliminating duplicated
matches.
Frontend algorithm. A client is not assumed to know which
process of the cluster is responsible for managing the state
of a particular publication or subscription. Furthermore, in
practice, an implementation of the middleware would typically
communicate with subscribers through TCP keep-alive con-
nections. As a consequence, the Frontend process is typically
used behind a load balancer to parse the protocol-specific
requests emitted by clients, to route them to the correct server
side State Manager processes using consistent hashing, and to
forward the computed matches back to the subscribers in the
protocol specific format. An hypothetic Frontend process can
receive four kinds of protocol-specific events from the client:
(1) haddPub|pubi messages are used to add or update the
state of a publication pub in the cluster; (2) hdeletePub|pubi
messages are used to delete the state of a publication pub
from the cluster; (3) haddSub|subi messages are used to add
or update the state of a subscription sub in the cluster; and
(4) hdeleteSub|subi messages are used to delete the state
of a subscription sub from the cluster. In Algorithm 1, the
sel f variable corresponds to the f rontend process itself and
the connection variable corresponds to a client connection,
typically a TCP connection.

Publisher

State
Manager

Tile
Manager

Tile
Manager

Frontend

➀ ➁

➂

➂

(a) Publication routing

Subscriber

State
Manager

Frontend

Tile
Manager

Tile
Manager

➃

➄

➅

➅

(b) Subscription routing

Subscriber

Tile
Manager

Tile
Manager

Frontend

➇

➆ tile = Hmin(tiles(pub1.Z \ sub1.Z))

tile 6= Hmin(tiles(pub1.Z \ sub1.Z))➆

(c) Match routing

Fig. 5: Distributed routing based on consistent hashing

Algorithm 1 Frontend

upon event hiniti
connections ?

upon event haddPub|pubi
send haddPub|pubi to FS(pub.id)

upon event hdeletePub|pubi
send hdeletePub|pubi to FS(pub.id)

upon event haddSub|subi
sub.sender sel f
connections connections[{(sub.id,connection)}
send haddSub|subi to FS(sub.id)

upon event hdeleteSub|subi
connections {(s,c) 2 connections|s 6= sub.id}
send hdeleteSub|subi to FS(sub.id)

upon event hmatch|pub,subi
conn c|(s,c) 2 connections|s = sub.id
send hmatch|pub,subi to connection

State Manager algorithm. A State Manager process is
responsible for managing the state of a subset of publications
and subscriptions active in the cluster. It receives four types
of messages from Frontend processes: (1) haddPub|pubi mes-
sages are used to add or update the state of a publication pub
to the state manager; (2) hdeletePub|pubi messages are used
to delete the state of a publication pub from the state manager;
(3) haddSub|subi messages are used to add or update the state
of a subscription sub to the state manager; (4) hdeleteSub|subi
messages are used to delete the state of a subscription sub
from the state manager. In addition, a State Manager process
sends four kinds of message to Tile Manager processes: (1)
haddTilePub|tile, pubi messages are used to add or update the
state of a publication pub to the Tile Manager process respon-
sible for tile; (2) hdeleteTilePub|tile, pubi messages are used

Algorithm 2 State Manager

upon event hiniti
pubs ?
subs ?

upon event haddPub|pubi
prev p 2 pubs such that p.id = pub.id
for all tile 2 tiles(prev.Z)\ tiles(pub.Z) do

send hdeletePub|tile, pubi to FT (tile.id)

for all tile 2 tiles(pub.Z) do
send haddPub|tile, pubi to FT (tile.id)

pubs {p 2 pubs|p.id 6= pub.id}[{pub}

upon event hdeletePub|pubi
prev p 2 pubs such that p.id = pub.id
for all tile 2 tiles(prev.Z) do

send hdeletePub|tile, pubi to FT (tile.id)

pubs {p 2 pubs|p.id 6= pub.id}

upon event haddSub|subi
prev s 2 subs such that s.id = sub.id
for all tile 2 tiles(prev.Z)\ tiles(sub.Z) do

send hdeleteSub|tile,subi to FT (tile.id)

for all tile 2 tiles(sub.Z) do
send haddSub|tile,subi to FT (tile.id)

subs {s 2 subs|s.id 6= sub.id}[{sub}

upon event hdeleteSub|subi
prev s 2 subs such that id = sub.id
for all tile 2 tiles(prev.Z) do

send hdeleteSub|tile,subi to FT (tile.id)

subs {s 2 subs|s.id 6= sub.id}

to delete the state state of a publication pub from the Tile Man-
ager process responsible for tile; (3) haddTileSub|tile,subi
messages are used to add or update the state of a subscription
sub to the Tile Manager process responsible for tile; and (4)

Algorithm 3 Tile Manager

upon event hiniti
pubs ?
subs ?

upon event haddPub|tile, pubi
for all s 2 subs|s.Z\ pub.Z 6= ? do

if tile = Hmin(tiles(pub.Z\ s.Z)) then
send hmatch|pub,si to s.sender

pubs {(tile, pub)}[
{(t, p) 2 pubs|¬(t = tile^ p.id = pub.id)}

upon event hdeletePub|tile, pubi
pubs {(t, p) 2 pubs|¬(t = tile^ p.id = pub.id)}

upon event haddSub|tile,subi
for all p 2 pubs : sub.Z\ p 6= ? do

if tile = Hmin(tiles(p.Z\ sub.Z)) then
send hmatch|p,subi to sub.sender

subs {(tile,sub)}[
{(t,s) 2 subs|¬(t = tile^ s.id = sub.id)}

upon event hdeleteSub|tile,subi
subs {(t,s) 2 subs|¬(t = tile^ s.id = sub.id)}

hdeleteTileSub|tile,subi messages are used to delete the state
state of a subscription sub from the Tile Manager process
responsible for tile. Algorithm 2 describes the internals of
a State Manager processes. When a user registers a new
publication or a new subscription, the Tile Manager processes
that overlap its geographical zone must be notified. In a
similar way, when a user updates the geographical zone of
a publication or a subscription, some previously notified Tile
Manager processes must be left and new ones be notified.
As we want these actions to be transparent to the end user, a
State Manager process records the state of publications and
subscriptions and sends the necessary maintenance messages
across the cluster. When a State Manager process receives
a message regarding a publication or a subscription, it uses
consistent hashing on tile identifiers tile.id in order to notify
the affected Tile Manager processes. Each State Manager
process is responsible for the states of the publications and
subscriptions stored in the pubs and in the subs sets. As these
sets only contain the latest publication and subscription states,
their identifiers pub.id and sub.id are used to identify and
eliminate older versions from the sets. We also assume that
tiles(prev.Z) returns an empty set when prev is null.

Tile Manager algorithm. A Tile Manager process is respon-
sible for computing all the matches between publications and
subscriptions whose geographical zones overlap with the zone
covered by a specific tile. A Tile Manager process receives
four kind of messages from State Manager processes: (1)
haddTilePub|tile, pubi messages are used to add or update

Publisher

Subscriber

Frontend

Frontend
➀

➁

➂

➃

➄

➆

➇

pub

sub

match

State Manager
Replicas (RP)

Tile Manager
Replicas (RT)

State Manager
Replicas (RS)

match

FS(sub.id)

FS(pub.id)

FT (tile.id)

FT (tile.id)

➅

Fig. 6: Replication of a Match Triggering Graphs

the state of a publication pub in the Tile Manager process
responsible for tile; (2) hdeleteTilePub|tile, pubi messages are
used to delete the state of a publication pub from the Tile Man-
ager process responsible for tile; (3) haddTileSub|tile,subi
messages are used to add or update the state of a subscription
sub in the Tile Manager process responsible for tile; and
(4) hdeleteTileSub|tile,subi message are used to delete the
state of a subscription sub from the Tile Manager process
responsible for tile. In addition, Tile Manager processes
send match messages in the form of hmatch|pub,subi to the
Frontend process attached to the end-user connection of the
subscriber. Algorithm 3 shows how collections of publication
and subscription states are maintained in Tile Manager pro-
cesses. When a publication state is added or updated, matches
are sent to overlapping subscriptions. When a subscription
state is added or updated, matches containing the overlapping
publications are forwarded to the match filter before reaching
the subscription.

E. Fault Tolerance and Reliability
In order to make our architecture reliable and fault tolerant,

we adopt an active replication strategy. In other words, each
message is processed by all the replicas and, given a replica-
tion factor r, the system should still be able to compute and
deliver all the matches when there are at most r� 1 failing
processes. The general idea behind our replication strategy
consists into fully replicating the Match Triggering Graph.
In order to replicate these graphs, we modify our consistent
hashing function so that, instead of returning a single process,
it returns a list of replicas that contains the r consecutive
processes of the hash ring located on distinct physical nodes.

Figure 6 illustrates in more details this replication mech-
anism. Here, we first notice a different behaviour in the
way Frontend processes and State Manager processes route
messages to replicas. In order to duplicate the routing graph,
Frontend processes contact all the State Manager replicas of
the lists RP and RS. In order to limit the number of messages,
a State Manager process from the list RP only sends one
messages to a Tile Manager process of the list RT . The position
of State Manager process in the list RS is used to select the
corresponding Tile Manager process in the list RT . As a result,

State Manager
Replicas (RP)

Tile Manager
Replicas (RT)

State Manager
Replicas (RS)

replica1

replica2

replica3

node2

node1

node3

node3

node5

node1

node4

node3

node2

Fig. 7: Non-Independence of failure in the Match Triggering
Graphs

State Manager
Replicas (RP)

Tile Manager
Replicas (RT)

State Manager
Replicas (RS)

replica1

replica2

replica3

node1

node2

node3

node4

node5

node6

node1

node2

node3

Fig. 8: Ensuring independence of failure in the Match Trig-
gering Graphs

the number of messages propagated in the cluster remains
proportional to the replication factor.
Independence of failure. The reliability of our architecture
relies on the assumption that n node failures do not compro-
mise more than n Match Triggering Graphs. However, because
of the multiple routing steps involved and the abstraction of
virtual nodes typically used in data centers, the lists of nodes
associated to the replicated processes can overlap. As a result,
several processes along the routing graphs might be located
on the same physical node, whose failure might break several
graphs and compromise the overall reliability of the system.

Figure 7 illustrates such a failure scenario. Here, if node3
fails, all the replicated routing graphs break. A solution to
this problem would be to ensure that the lists of physical
nodes associated to the lists of replicas RP, RT and RS never
overlap. However, enforcing this property requires some sort
of agreement.

Again, our approach consists in finding an a priori agree-
ment that completely avoid the costs of a distributed agreement
or the disadvantages of a centralized solution. At the level
of the consistent hashing function, we cannot ensure that
the selection of replicas throughout the routing steps will
result in non-overlapping lists of physical nodes. However,
by creating replication groups in the consistent hash ring, we
can ensure that the lists of physical machines associated to the
selected replicas are either fully overlapping or not overlapping
at all. In addition, if we order the lists of replicas by the
physical addresses of their hosts, we can guarantee that the
overlapping lists will always be aligned, i.e., the replicated
processes located on the same machine will communicate with
each others. Figure 8 illustrates such a correct alignement.

Here the physical nodes associated to the lists RP, RT and
RS are either non-overlapping or fully overlapping. In case of
full overlapping, the lists are ordered or aligned by using the
physical addresses. As a result, the number of broken routing
graphs will never be greater than the number of failures,
ensuring the reliability of the system.

IV. THEORETICAL EVALUATION

In this section, we theoretically evaluate our distributed
algorithm. Given a distributed algorithm, two metrics are
generally used to measure its performance: the number of
messages required for the termination of an operation and
the number of communication steps required for its termina-
tion [8].

Regarding the first metric, the operation that has the poten-
tial to generate the greatest number of messages in the cluster
is the insertion or the update of a publication in the cluster.
The number of messages generated by the insertion or the
update of a subscription will always be lower because only one
subscriber is concerned by the operation. In order to calculate
the number of messages required to terminate the insertion of
a publication, we first introduce the variable t = |Tiles(pub.Z)|
that corresponds to the number of tiles affected by the opera-
tion. We also introduce the number of matches m generated by
the operation such that m = |{sub2 subs|sub.Z\ pub.Z 6=?}|.
On this basis, we can easily enumerate the number of messages
generated by the insertion of a publication. To inform the
Frontend process, a first message is required by the client. A
second message is sent by the Frontend process to the State
Manager process. Then, t messages are required to inform the
Tile Manager processes. As the Tile Manager processes are
able to agree on which process will send the match message
to the Frontent process without communicating, m messages
will be generated. Finally, m messages (i.e., one message per
matching subscriber) are required to forward the matches from
the Frontend processes to the end user. Hence, we end up
with a worst case scenario of 1 + 1 + t + m + m messages
that correspond to a complexity of O(t + m) messages. As a
result, knowing that the worst case of a centralized architecture
should be characterized by an O(m) complexity, the overhead
introduced by our distributed algorithm is optimal in the
considered execution model (presented in Section II).

Regarding the second metric, the number of communication
steps required for the termination of the distributed algorithm
is bounded to five in the worst case. Although at a first glance
this number might seem too high, we demonstrate in the next
section that the latency introduced by these steps remains very
low, in the context of a data center.

V. EXPERIMENTAL EVALUATION

In addition to provide a theoretical evaluation of our al-
gorithms, we tested the scalability of our architecture in
the context of a large scale cluster setup. In this section,
we describe the results we obtained in terms of throughput,
reliability, load, memory and latency.

10 50 100 150 200

0
K

50
 K

10
0

K
15

0
K

20
0

K

Nodes

M
ov

es
 /

se
co

nd

k=0.2
k=0.5
k=0.8

10 50 100 150 200
0

K
20

 K
60

 K
10

0
K

Nodes

M
at

ch
es

 /
se

co
nd

k=0.2
k=0.5
k=0.8

Fig. 9: Varying the ratio of publications and subscriptions (k)

A. Evaluation setup

Our implementation is written in Scala6 and rely on a dis-
tributed application framework called Akka.7 This framework
relies on the Actor Model as an abstraction for distribution,
concurrency, parallelism and communication. Therefore, each
process described in the architecture corresponds to an actor.
We used a Kubernetes8 cluster hosted in Google Cloud9 to run
our experiments. In Kubernetes, Docker10 containers are used
to accelerate the deployment of applications and a concept
named Daemon Set can be used to run a copy of an application
on a collection of nodes in the cluster. We used StatsD11 to
collect and aggregate statistics across the cluster. We ran our
prototype on cluster configurations made of up to 200 virtual
machines with two vCPU and 7.5GB of RAM.

B. Cluster settings

In order to verify that our architecture scales horizontally,
we saturated various cluster configurations with move opera-
tions. To do so, we created a client application that simulates
a fleet of moving entities (either publications or subscriptions)
of size n. Moving entities have a circular range with radius
of 50 meters, a speed of 20km/h, and send move operations
every 10 seconds. Each node in the cluster run an instance
of this application and the average cpu load of the node is
used to mitigate the amount of move operations generated.
In other words, the client applications increase the size of
the fleet when the load of the nodes are below a minimal
threshold. Inversely, the clients decreases the size of the fleet
when a maximal load threshold is reached. As a result, the
number of move operations is dynamically adjusted to the load
that the cluster is able to sustain. The members of the fleet
respect a uniform density of 100 moving entities per square
kilometres. A configuration parameter k corresponds to the
ratio of moving entities mapped to publications. Therefore,
p = k ⇤ n corresponds to the number of publications and
s = (1� k) ⇤ n corresponds to the number of subscriptions.

6https://github.com/scala/scala
7https://github.com/akka/akka
8https://github.com/kubernetes/kubernetes
9https://cloud.google.com
10https://github.com/docker/docker
11https://github.com/etsy/statsd

10 50 100 150 200

0
K

50
 K

10
0

K
15

0
K

Nodes

M
ov

es
 /

se
co

nd

r=1
r=2
r=3

10 50 100 150 200

0
K

20
 K

60
 K

10
0

K

Nodes

M
at

ch
es

 /
se

co
nd

r=1
r=2
r=3

Fig. 10: Varying the replication factor (r)

In our configurations, the size of the tiles is fixed at a
width of approximately 1222 meters. Finally, the parameter
r corresponds to the replication factor enforced by the cluster.

C. Horizontal scalability
Figure 9 highlights the scalability of our architecture for

three distinct scenarios by varying the k parameter. When k =
0.2, we have 20% of publications and 80% of subscriptions,
which might correspond to the need of a hailing applications.
When k = 0.5, the balance between publications and subscrip-
tions is perfect, which might corresponds to the radar of an
autonomous fleet of vehicles. When k = 0.8, we hypothetically
address the need of an IoT application, where the data of many
sensors (publications) are aggregated by moving subscriptions.
First, in the three cases, we notice that our architecture scales
almost linearly. It is interesting to note that, with 200 nodes
we were able to sustain the move operations generated by
a fleet of 1’900’000 moving entities. Every second, such a
load approximately corresponds to 190’000 move operations
and 130’000 matches. On a daily basis, this represents a
load of more than 15 billion move operations and 11 billion
matches. Interestingly, an uneven distribution of publications
and subscriptions increases the number of move operations that
the system is able to sustain. In fact, as illustrated in Figure 9,
such distribution tends to reduce the number of matches and
releases additional resources for handling move operations.

D. Reliability overhead
Figure 10 highlights the cost associated to reliability. As

illustrated here, replicating the Match Triggering Graph sym-
metrically decreases the number of number of move operations
that the system is able to sustain and the number of matches
it is able to compute. Interestingly, doubling the replication
factor does not divide the throughput by two. This is probably
due to the fact that the graph is replicated from the frontend
process and not from one end to the other. Finally, it is worth
noting that the system scales almost linearly for all the tested
replication factors.

E. Load, memory and latency
Given a fixed cluster size of 10 nodes, Figure 11 shows the

latency measured in milliseconds over several hours. Here,
latency refers to the time taken by a publication to reach

Fig. 11: Latency (milliseconds) on a 10 nodes cluster

10 50 100 150 200

4.
2

4.
4

4.
6

4.
8

5.
0

Nodes

Lo
ad

 a
ve

ra
ge

10 50 100 150 200

20
0

24
0

28
0

Nodes

M
em

or
y

(M
B)

10 50 100 150 200

0
10

00
20

00

Nodes

La
te

nc
y

(m
s)

max
99th
90th

Fig. 12: Load average, memory and latency

a matching subscription. To measure this kind of end-to-
end latency, we collocated a subscription and a matching
publications on the same nodes and periodically calculated
latency by subtracting the sending time of the publication
to its reception time. For this experiment, we started virtual
machines in two data centers and guaranteed that the virtual
machines were located on different hosts. As highlighted
here, 99% of the publications were delivered in less than 50
milliseconds and, in the worst case, latency always remained
below 100 milliseconds. Interestingly, we noticed that the
latency peaks were often linked to stop-the-world garbage
collection tasks performed by Java. Average cpu load, memory
usage and latency are a key metrics that have to remain stable
as the size of the cluster grows. As illustrated in Figures 12,
our solution ensures that these metrics remain stable regardless
of the scale. In terms of latency, the max value corresponds
to the sole maximal latency measure recorded for a given
configuration. Here, the 90th and 99th percentile show that
most operations are characterized by a very low latency.
Therefore, we conclude that the max value is the result of
unpredictable garbage collection tasks and not of a greater
cluster size.

VI. RELATED WORK

A. Location-Based Publish and Subscribe

To our knowledge, despite the fact that some studies [2],
[3], [6], [11] approach location-based publish and subscribe
from a distributed-system perspective, none of them focus on
horizontal scalability. Interestingly, by addressing scalability in
a vertical manner, a huge body of literature recently focused
on improving the computation of spatial matches on a single
node. For example, Cugola et al. use GPU in order to improve
the performance of location-based publish and subscribe [4].
In [21], Yylomenos et al. address the problem of caching data

in a publish and subscribe architecture that targets mobile and
pervasive devices. In [16] and [22], Guoliang et al. propose an
efficient R-Tree based index structure, as well as filtering and
pruning algorithms, in order to accelerate the computation of
spatial matches. In [12], Hu et al. propose another variant of
the R-Tree, the RI-Tree, to solve the same problem. In [19],
Wang et al. propose an alternative index structure, the AP-
Tree; it organises records using keywords and spatial data.
More recently, in [9], L. Guo et al. described a location-based
publish and subscribe system that relies on the concept of safe
region in order to reduce communication overhead between a
node responsible for the computation of matches and a set of
clients. The solution we propose differs from prior work in
several ways. For example, in contrast to locality-preserving
data structures, such as R-Trees, our solution is somehow
counterintuitive because it fragments geographical locality by
using consistent hashing in order to improve performance.
More importantly, our solution completely departs from ap-
proaches that rely on a single node and addresses the problem
of horizontally scaling the computation of matches within a
cluster.

B. Continuous KNN Queries

Another field of research closely related to location-based
publish and subscribe is the processing of continuous top-
k nearest-neighbours queries (KNN). Given a query charac-
terised by a moving location and some keywords, the problem
consists in continuously updating a set of objects that satisfies
the specified constraints in terms of context and content.
In [1], Bamba et al. define the notions of spatial alarms
and safe-region computation: it relies on the assumption that
moving queries are performed on static datasets. Under these
conditions, it becomes possible to identify areas in which
no matching event will occur. Knowing this, the application
can simply disconnect when entering a safe-region and re-
connect when leaving it, thus greatly reducing network traffic
and communication costs. In [10], Hasan et al. present an
efficient construction technique for safe-regions, based on
range nearest-neighbor queries. In [20], Wu et al. propose a
safe-region detection mechanism that include text relevancy.
In [13], Huang et al. introduce an alternative representation
for safe-region and improve the performance of safe-region
construction. The assumption that a part of the data remains
static is unfortunately too strong in our case, since our so-
lution specifically supports moving publications and moving
subscriptions.

C. Consistent Hashing

Web services can be subject to what is called the hot
spot phenomenon: A web resource can experience a sudden
and great popularity, and a single server cannot handle the
incoming traffic. In this context, caching and load balancing
strategies become vital. In [14], Krager et al. introduced a
family of hash functions called consistent hashing: it can be
used to relieve hot spots from the web. In [15], the same
authors also show how consistent hashing can be used in order

to create distributed caches. Among the four original properties
described in these papers, two had a huge impact on distributed
database communities. Balance and monotone hash functions
give good guarantees on the location and the distribution of
cached items. These properties are now at the root of most
distributed hash tables; and some popular databases such as
Dynamo also use them in order to spread and locate records
in a distributed system [5]. Another algorithm, called Rendez-
vous Hashing [18], developed at the same period achieves
the same kind of distributed agreement and can be used as a
substitute. Recently, some topic-based publish/subscribe sys-
tems use consistent hashing in order to scale horizontally [23],
[17], [7]. Contrary to overlapping spatial contexts, topics are
strictly isolated from each other. As a result, the architecture
we propose for location-based publish/subscribe significantly
differs from the usual application of consistent hashing.

VII. CONCLUSION AND FUTURE WORK

We have highlighted the limitations of existing location-
based published and subscribe systems in terms of horizontal
scalability and have introduced a model adapted to the context
of a distributed system. On this basis, we have described and
implemented a novel architecture based on the assumption that
fragmenting locality by using consistent hashing could help
compute matches efficiently in a cluster. Furthermore, we have
demonstrated that the number of additional communication
steps introduced by our protocol, in order to support moving
publications and subscriptions, does not compromise horizon-
tal scalability. In addition, we have shown that reliability and
fault tolerance can be achieved with a number of messages
proportional to the replication factor. Finally, we have showed
with a prototype implementation and an experimental eval-
uation that our architecture can be deployed on commodity
hardware and achieve a very high throughput and preserve a
low latency.

Although the proposed distributed architecture yields very
promising results, it also also raises a certain number of
questions. First, the grid we have introduced in this paper is
homogenous, whereas human activity is not. Vast areas, such
as oceans are mostly empty and a grid that takes this fact into
account might produce interesting results. Consequently, we
plan to explore different grid topologies that account for the
density of cities and the emptiness of remote areas. Second,
the related work regarding safe-region detection highlighted
the communication cost linked to continuous transmission of
matches. Although safe-regions are based on the assumption
that a part of the data remains static, Guo et al. demonstrate
in [9] that it can be adapted to moving publications and
subscriptions in the context of a single node. Therefore, we
plan to investigate the possibility of detecting and constructing
safe-regions in the context of a distributed system.

REFERENCES

[1] B. Bamba, L. Liu, A. Iyengar, and P. S. Yu. Safe region techniques
for fast spatial alarm evaluation. Technical report, Georgia Institute of
Technology, 2008.

[2] X. Chen, Y. Chen, and F. Rao. An efficient spatial publish/subscribe
system for intelligent location-based services. In Proceedings of the
2nd international workshop on Distributed event-based systems, pages
1–6. ACM, 2003.

[3] G. Cugola and J. E. M. de Cote. On introducing location awareness in
publish-subscribe middleware. In 25th IEEE International Conference
on Distributed Computing Systems Workshops, pages 377–382. IEEE,
2005.

[4] G. Cugola and A. Margara. High-performance location-aware publish-
subscribe on gpus. In ACM/IFIP/USENIX International Conference on
Distributed Systems Platforms and Open Distributed Processing, pages
312–331. Springer, 2012.

[5] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo:
amazon’s highly available key-value store. ACM SIGOPS Operating
Systems Review, 41(6):205–220, 2007.

[6] P. T. Eugster, B. Garbinato, and A. Holzer. Location-based pub-
lish/subscribe. In Fourth IEEE International Symposium on Network
Computing and Applications, pages 279–282. IEEE, 2005.

[7] J. Gascon-Samson, F.-P. Garcia, B. Kemme, and J. Kienzle. Dynamoth:
A scalable pub/sub middleware for latency-constrained applications in
the cloud. In Distributed Computing Systems (ICDCS), 2015 IEEE 35th
International Conference on, pages 486–496. IEEE, 2015.

[8] R. Guerraoui and L. Rodrigues. Introduction to reliable distributed
programming. Springer Science & Business Media, 2006.

[9] L. Guo, D. Zhang, G. Li, K.-L. Tan, and Z. Bao. Location-aware pub/sub
system: When continuous moving queries meet dynamic event streams.
In Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data, pages 843–857. ACM, 2015.

[10] M. Hasan, M. A. Cheema, X. Lin, and Y. Zhang. Efficient construction
of safe regions for moving knn queries over dynamic datasets. In
International Symposium on Spatial and Temporal Databases, pages
373–379. Springer, 2009.

[11] A. Holzer, P. Eugster, and B. Garbinato. Alps–adaptive location-based
publish/subscribe. Computer Networks, 56(12):2949–2962, 2012.

[12] J. Hu, R. Cheng, D. Wu, and B. Jin. Efficient top-k subscription match-
ing for location-aware publish/subscribe. In International Symposium
on Spatial and Temporal Databases, pages 333–351. Springer, 2015.

[13] W. Huang, G. Li, K.-L. Tan, and J. Feng. Efficient safe-region
construction for moving top-k spatial keyword queries. In Proceedings
of the 21st ACM international conference on Information and knowledge
management, pages 932–941. ACM, 2012.

[14] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and
D. Lewin. Consistent hashing and random trees: Distributed caching
protocols for relieving hot spots on the world wide web. In Proceedings
of the twenty-ninth annual ACM symposium on Theory of computing,
pages 654–663. ACM, 1997.

[15] D. Karger, A. Sherman, A. Berkheimer, B. Bogstad, R. Dhanidina,
K. Iwamoto, B. Kim, L. Matkins, and Y. Yerushalmi. Web caching
with consistent hashing. Computer Networks, 31(11):1203–1213, 1999.

[16] G. Li, Y. Wang, T. Wang, and J. Feng. Location-aware publish/subscribe.
In Proceedings of the 19th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 802–810. ACM, 2013.

[17] V. Setty, M. van Steen, R. Vitenberg, and S. Voulgaris. Poldercast:
Fast, robust, and scalable architecture for p2p topic-based pub/sub. In
Middleware, 2012.

[18] D. G. Thaler and C. V. Ravishankar. Using name-based mappings
to increase hit rates. IEEE/ACM Transactions on Networking (TON),
6(1):1–14, 1998.

[19] X. Wang, Y. Zhang, W. Zhang, X. Lin, and W. Wang. Ap-tree: efficiently
support location-aware publish/subscribe. The VLDB Journal—The
International Journal on Very Large Data Bases, 24(6):823–848, 2015.

[20] D. Wu, M. L. Yiu, C. S. Jensen, and G. Cong. Efficient continuously
moving top-k spatial keyword query processing. In 2011 IEEE 27th
International Conference on Data Engineering, pages 541–552. IEEE,
2011.

[21] G. Xylomenos, X. Vasilakos, C. Tsilopoulos, V. A. Siris, and G. C.
Polyzos. Caching and mobility support in a publish-subscribe internet
architecture. IEEE Communications Magazine, 50(7):52–58, 2012.

[22] M. Yu, G. Li, T. Wang, J. Feng, and Z. Gong. Efficient filtering
algorithms for location-aware publish/subscribe. IEEE Transactions on
Knowledge and Data Engineering, 27(4):950–963, 2015.

[23] Y. Zhao, K. Kim, and N. Venkatasubramanian. Dynatops: a dynamic
topic-based publish/subscribe architecture. In DEBS, 2013.

