
Towards Usable Checksums: Automating the Integrity
Verification of Web Downloads for the Masses

Mauro Cherubini
UNIL – HEC Lausanne

Switzerland
mauro.cherubini@unil.ch

Alexandre Meylan
UNIL – HEC Lausanne

Switzerland
alexandre.meylan@unil.ch

Bertil Chapuis
UNIL – HEC Lausanne

Switzerland
bertil.chapuis@unil.ch

Mathias Humbert
Swiss Data Science Center
ETH Zurich and EPFL

Switzerland
mathias.humbert@epfl.ch

Igor Bilogrevic
Google Inc.
Switzerland

ibilogrevic@google.com

Kévin Huguenin
UNIL – HEC Lausanne

Switzerland
kevin.huguenin@unil.ch

ABSTRACT
Internet users can download software for their computers from
app stores (e.g., Mac App Store and Windows Store) or from other
sources, such as the developers’ websites. Most Internet users in the
US rely on the latter, according to our representative study, which
makes them directly responsible for the content they download. To
enable users to detect if the downloaded files have been corrupted,
developers can publish a checksum together with the link to the
program file; users can then manually verify that the checksum
matches the one they obtain from the downloaded file. In this pa-
per, we assess the prevalence of such behavior among the general
Internet population in the US (N = 2,000), and we develop easy-
to-use tools for users and developers to automate both the process
of checksum verification and generation. Specifically, we propose
an extension to the recent W3C specification for sub-resource in-
tegrity in order to provide integrity protection for download links.
Also, we develop an extension for the popular Chrome browser
that computes and verifies checksums of downloaded files automat-
ically, and an extension for the WordPress CMS that developers
can use to easily attach checksums to their remote content. Our
in situ experiments with 40 participants demonstrate the usability
and effectiveness issues of checksums verification, and shows user
desirability for our extension.

CCS CONCEPTS
• Security and privacy → Web protocol security; Usability in se-
curity and privacy; Hash functions and message authentication
codes;

KEYWORDS
checksums; web downloads; security; usability

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’18, October 15–19, 2018, Toronto, ON, Canada
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5693-0/18/10. . . $15.00
https://doi.org/10.1145/3243734.3243746

ACM Reference Format:
Mauro Cherubini, Alexandre Meylan, Bertil Chapuis, Mathias Humbert,
Igor Bilogrevic, and Kévin Huguenin. 2018. Towards Usable Checksums:
Automating the Integrity Verification of Web Downloads for the Masses. In
2018 ACM SIGSAC Conference on Computer and Communications Security
(CCS ’18), October 15–19, 2018, Toronto, ON, Canada. ACM, New York, NY,
USA, 16 pages. https://doi.org/10.1145/3243734.3243746

1 INTRODUCTION
Nowadays, Internet is the main source for users to obtain programs
for their computers. A popular and convenient way to download
programs is to use official app stores such as Apple’s Mac App Store
and Microsoft’s Windows Store. Such platforms, however, have sev-
eral drawbacks for developers, including long review and validation
times, technical restrictions (e.g., sandboxing), incompatibility with
software licenses, and substantial commissions [45]. Therefore, it
is quite common that developers make their programs available
directly from their websites. This is the case of popular programs
such as VLC media player, OpenOffice, and GIMP.

When developers make programs available from their websites,
they can either host them directly on the same server as the website
or rely on so-called third-party hosting platforms, such as mirrors
and content delivery networks (CDNs) that provide substantial im-
provements for the users in terms of performance (e.g., bandwidth)
and availability. However, this latter solution means relinquishing
control over the program files and fully trusting the third-party
platform: If the CDN is hacked, the programs can be corrupted to
include all sorts of malware, thus infecting the computers of the
users willing to install and run the original program. Recently, both
the popular BitTorrent client Transmission [5, 29] and the Linux
Mint distribution [3, 50] were corrupted by injecting, in the original
programs, a ransomware in the former, and a backdoor in the lat-
ter. Such corruptions are particularly problematic for privacy and
security software (e.g., PGP) used by at-risk populations such as
journalists and political dissidents. This applies to all files that can
harm a user’s device; even PDF files can be infected. In general, it
is crucial for website administrators to make sure that the content
of the files downloaded by their visitors through external links
matches the content of the files at the time the link was created.
It would indeed be problematic (not only from a security point

https://doi.org/10.1145/3243734.3243746
https://doi.org/10.1145/3243734.3243746

CCS ’18, October 15–19, 2018, Toronto, ON, Canada Mauro Cherubini et al.

of view) if a picture linked from a website would be replaced by
another one.

A popular way for developers to enable users to detect acci-
dental or intentional modifications of their program files hosted
on external platforms, such as mirrors and CDNs, is to provide
so-called checksums on their websites. This practice is quite com-
mon in the open-source community but also for companies such as
Google (e.g., checksums for Android Studio). Such checksums are
usually derived from the output of cryptographic hash functions
(e.g., SHA-1), in the form of sequences of alphanumeric digits called
digests and displayed on the download webpages, or from digital
(detached) signatures provided in separate files. Users can verify
the integrity of the program files they download based on the pro-
vided checksums;1 however, it usually requires the users to execute
dedicated (command line)2 programs and to manually compare
long sequences, which has been proven, in contexts different from
web downloads (e.g., PGP key fingerprint verification), to suffer
from usability issues and to be error prone [26, 39]. Other solutions,
such as code-signing, also suffer from some limitations and only
partially address the aforementioned problem. These issues call for
automated and reliable methods.

In this paper, we consider the context of a website administrator
(e.g., a software developer or vendor) who includes a link on one
of their webpages for downloading a file such as a program. The
program file is hosted on a third-party server (i.e., different from
the server hosting the website, e.g., mirrors, CDNs) that is not con-
trolled by the website administrator. In order to check the integrity
of the file after download, this website administrator includes a
checksum of the program file on their website (not hosted on the
third party server) . The threat we consider is the case where the file
pointed to by the link is corrupted, for instance by the third-party
server operator or by hackers; furthermore, the checksum of the
corrupted file can partially match that of the original file (e.g., the
first ten digits match). And the users who download the file do not
verify its checksum or do so in an inattentive way. To the best of our
knowledge, no practical solution has been proposed for automati-
cally verifying web downloads and the general topic of the integrity
of programs downloaded on the Web has been mostly overlooked.
We explore this research gap and address these challenges by per-
forming a thorough analysis of the common practices regarding
the use of checksums and their usability and effectiveness, and by
proposing technical solutions to the issues we identify. Specifically,
our contributions are as follows:

• We conduct the first comprehensive study on the use of
checksums for verifying the integrity of web downloads. We
rely on several instruments: a large-scale online survey with
2,000 participants to assess Internet users’ knowledge of
checksums and security behavior in general with respect to
web downloads of program files; a website survey of 20 down-
load pages of popular programs to assess how developers
use checksums; and an in situ experiment with 40 partic-
ipants that uses an eye-tracker to precisely evaluate how
users verify checksums. It is the first time that eye-tracking

1Note that checksums only enable users to verify that the file they downloaded is
indeed the one the website administrator intended to share.

2By default, the major operating systems include only command-line tools to
compute checksums, e.g., shasum for macOS and Linux and certutil for Windows.

technologies are used for studying usability and attention
during the checksum verification process. We identify the
main challenges with checksums from the point of view of
usability, efficiency, security and adoption.

• To address the usability and effectiveness issues of check-
sums, we propose an extension to the current World Wide
Web Consortium (W3C) specification for subresource in-
tegrity (SRI) [49]; it standardizes the use of checksums for
external resources such as Javascript files, in order to cover
download links of program files. Our solution enables devel-
opers to rely on a standardized method that would signifi-
cantly reduce the user burden of checksum verification.

• We develop two novel extensions for improving checksum
verification. The first one is an automated checksum verifi-
cation browser extension that alerts users when there is a
potential mismatch between the checksum computed from
the downloaded file and that (or those) available on the de-
veloper’s website, even when the checksum is displayed in
the page (and not through SRI), as is the case today. The
second one is a checksum generation plugin for a popular
web content-management system (CMS), which automati-
cally implements our proposed extension to the W3C’s SRI
specification on the websites managed by such systems.

Our proposed solution would be deployed as follows: The use of
checksums for web downloads and their inclusion in links would be
standardized as an extension of SRI; alternatively, checksums would
be extracted from the “Download” webpages in an ad-hoc fashion.
The automatic extraction and verification of the checksums would
be implemented in the web browser (or in an extension).

The results of our large-scale online survey demonstrate that,
although 71% of the respondents declare to download program files
from sources where they could be potentially corrupted, only 1.7%
check the integrity of these downloads. Furthermore, when asked
about what they would do if they saw a checksum on a website they
downloaded a program from, only 5.2% of the participants stated
they would use it to verify the file’s integrity (out of 6 possible
options), thus revealing the sheer number of computer users who
know about this security technology. The results of our website sur-
vey show that a substantial fraction of download webpages include
only checksums generated with weak hash functions (MD5 and
SHA1). And, only a small fraction of the websites include instruc-
tions on how to verify file integrity with checksums or a description
of their utility. Finally, our in-person experiments demonstrate that,
despite being explicitly asked to verify the checksums, more than
one third of our participants fail to detect the mismatch (i.e., par-
tial pre-image attack) between the checksum displayed on a fake
download webpage and the one computed from the (corrupted)
downloaded file. Our eye-tracking analysis shows that users pay
more attention to the first digits of the checksums, which reduces
drastically the security provided by such checksums. It also sug-
gests that failure to detect mismatch between checksums is caused
by a low number of fixations. The user feedback also shows a good
desirability of verification mechanisms integrated in web browsers.

The rest of the paper is organized as follows. We survey the
related work in Section 2. We introduce the system and threat
models as well as the background about checksums and file integrity

Automating the Integrity Verification of Web Downloads for the Masses CCS ’18, October 15–19, 2018, Toronto, ON, Canada

verification in Section 3. We present the survey of websites that
use checksums in Section 4. We follow up with the online user
survey on Internet security behavior in Section 5. We then describe
the proposed solutions in Section 6, and present the in situ user
experiments with eye-tracking in Section 7. We discuss the main
findings and limitations in Section 8. We conclude the paper in
Section 9, by describing the outlook and perspectives for future
work.

2 RELATEDWORK
From a high-level perspective, our work can be framed within
the broader category of online security behaviors as it touches
upon the subject of security warnings through the lenses of file
integrity verification. Hereafter we first present studies that focused
on Internet users download behavior, then we focus on the works
related to the effectiveness of security warnings and we then focus
on the sub-area dedicated to file integrity verification.

2.1 Download Behavior
Internet users are increasingly exposed to security threats, as found
by Furnell et al. [24]: They conducted a survey with 415 home users
to assess their perceptions of security issues, and their attitudes
towards the use of related safeguards. The survey revealed that, al-
though the responders had a high degree of confidence, they lacked
desirable knowledge of different safeguards that can increase their
security. They also found that there were notable shortcomings
among users who considered themselves “experts”. A similar survey
conducted more recently with 594 home computer users revealed
that security-related behavior is influenced by a combination of
cognitive (i.e., understanding of the related threats), social, and
psychological components (i.e., time pressure to complete the re-
lated task) [9]. Furthermore, a recent survey conducted in the UK
on businesses and charity organizations [37] revealed that secu-
rity knowledge of employees is the weakest link leading to many
successful cyber-attacks and that often times enforcing security
policies is ineffective. Download behavior is often also influenced
by security recommendations, as studied by Redmiles et al. [34, 35].
The authors conducted semi-structured interviews and deployed a
large-scale questionnaire to study security advice. In these studies,
they found that users evaluate digital-security recommendations
based on the trustworthiness of the source of the advice. When
advised by knowledgeable peers, users might trust the source over
the content of the recommendation. Unfortunately, none of these
studies focused specifically on Internet downloads, which is one of
the goals of this study.

2.2 Effectiveness of Security Warnings
A security warning is a cautionary message usually delivered by
the operating system or a third-party app to users when they are
about to perform an action on their system that could potentially
have negative consequences. Such actions include downloading or
opening a file containing a virus, visiting a website that contains
malware or has phishing intents, or simply installing an app from
an untrusted source. The users can either act on such warnings or
ignore them. Over the past decade, the research community has
extensively studied how users interact with such warnings, and

whether the warnings are effective and understandable [7, 10, 16,
18, 27, 30, 36, 40, 42]. These studies are relevant to our work as we
also designed an intervention through a browser extension.

The research on security warnings has shown that they are, on
the one hand, effective at reducing the rate at which users perform
potentially harmful actions after they have been warned [7, 36, 40].
On the other hand, users tend to ignore such warnings due to their
excessive frequency [11] and habituation effects [42]. In another
work, Modic and Anderson [30] studied what makes a warning ef-
fective, and they have found that warnings should (i) contain a clear
and non-technical description of a potential negative consequence
and (ii) they should be given from a “position of authority” [30]. In
addition to the content, the design matters as well, as shown in two
separate instances: First, by Akhawe and Felt [7] who compared
SSL warnings from two different web browsers and showed that
users of one browser proceeded to potentially malicious websites
twice as often as the users of the other web browser; second, by
Bravo-Lillo et al. [11] who showed that by changing the user inter-
face (UI) elements in the warning to highlight the most important
elements for the users, they can reduce by half the installation rate
of potentially malicious apps.

When looking at what motivates users for act or ignore security
warnings and advice, several studies point out that the most impor-
tant factors are the perceived security/convenience trade-off and the
perceived risk of pursuing potentially dangerous actions [20, 43, 51].
For instance, Fagan and Khan [20] show that most users who follow
a security advice do so for security benefits, whereas those who do
not follow it do so to avoid an inconvenience mostly related to the
lack of time.

2.3 File Integrity Verification
Several works have studied, bymeans of online surveys, the security
and usability of different fingerprint representations for authenti-
cation and integrity verifications. Hsiao et al. have compared the
speed and accuracy of hash verification with various textual and
visual representations [26]. Their between-subjects online study
with 436 participants is the first to show that users struggle with
comparing long fingerprints. More recently, Dechand et al. have
studied the performance and usability of six textual fingerprint rep-
resentations [39]. Their online experiment with 1,047 participants
demonstrates that the state-of-the-art hexadecimal representation
is prone to partial pre-image attacks more than others, with more
than 10% of attacks being missed by the users. Similarly, Tan et
al. evaluate the usability and security of eight textual and visual
fingerprint representations [44]. The results of their 661-participant
experiments suggest that, when security is paramount, the best
strategy is to remove the human from the loop and automate the
verification process, which the authors did not test.

Research on secure messaging also provides us with relevant
findings on the usability and security of fingerprints for authen-
ticating the communicating entities. In their systematization of
knowledge on secure messaging, Unger et al. emphasize the usabil-
ity and adoption limitations of manual fingerprint verification [46].
Moreover, they mention short authentication strings, which rely
on truncated cryptographic hashes, as a more usable alternative to
fingerprints. In a 60-participant study on secure communication

CCS ’18, October 15–19, 2018, Toronto, ON, Canada Mauro Cherubini et al.

tools, Abu-Salma et al. show that fingerprints are not understood by
participants, thus indirectly hindering the adoption of such tools [6].
Vaziripour et al. evaluate the usability of the authentication pro-
cesses in three popular messaging applications (WhatsApp, Viber,
Facebook Messenger) through a two-phase study involving 36 pairs
of participants [19]. These participants notably report that finger-
print strings are too long, and some WhatsApp users appreciate
being able to scan QR codes instead of having to compare long
digit strings. Note that in these contexts, unlike for web down-
loads, automating fingerprint comparison is not possible because
fingerprints usually come from a different channel. On the practical
side, a number of programs (including browser extensions [1, 2])
to compute and verify checksums with graphical user interface are
available. Yet, they only enable users to compute checksums, not to
automatically verify them against those extracted from webpages.

Finally, digital certificates can be used to certify the authenticity
and integrity of programs. Such a solution, however, has shortcom-
ings including the fact that certificates are costly, that the problem
of certificate validation remains, and that private keys (of devel-
opers and certification authorities) can be compromised [4, 48].
In fact, digital certificates (used for code-signing) do not provide
the same guarantees that checksums do: Certificates guarantee
that the downloaded files have been produced by certain develop-
ers, whereas checksums guarantee that the downloaded files are
those the website administrators intended to point to. Therefore,
checksums do not provide protection in the case where a malicious
website administrator includes a link to a corrupted version of a
program (e.g., Transmission). And certificates do not provide pro-
tection in the case where a hacker replaces a program file with a
corrupted version of the program signed with the (valid) account
of a malicious developer (or with a stolen account).

In our work, we focused on one aspect that was neglected by
prior research: What is the behavior of the users when they are
asked to verify file integrity? Instead of testing different design of
the checksum, we focused on the process by which participants
were comparing a checksum with the output of the hash functions
and their overall understanding of it. This point is highly relevant
for this area of research as finding that people have a hard time
understanding the whole idea behind checksum, like we did, would
make automating the verification process a more secure solution
over designing simpler checksums. In summary, we go beyond
the sole investigation of manual fingerprint comparison, and we
consider the overlooked context of web download integrity. We also
employ eye-tracking techniques to gain a deeper understanding of
how people perform fingerprint/checksum comparisons.

2.4 Automating Integrity Verification
In certain contexts, checksum verification is automated. It is the
case with W3C’s subresource integrity, described below in the back-
ground section. It is also the case of package managers such as
brew (macOS) or aptitude (Linux), which enable users to download
packages and programs from so-called repositories. They automati-
cally compare the checksums of the downloaded packages to those
specified in the package description: A typical brew “cask” package
contains a link to an installer hosted on an external platform, a
command line to run it and a checksum to verify its integrity (see

that of VLC3). Such package managers, however, are mostly popular
on Linux systems and they are used mainly by experienced users
(e.g., users familiar with the terminal). Note that package managers
are also subject to attacks [12].

3 SYSTEM AND THREAT MODEL
In this section, we describe the general system and adversarial
model, as well as the technical background necessary to understand
the work (i.e., checksums and digital signatures). Readers familiar
with these concepts can skip the corresponding paragraphs.

3.1 System and Threat Model
We consider a website hosted on a given web server. The website
contains a download page that includes a link to a program hosted
on an external web server (a hosting platform, typically on a mirror
or a content delivery network) managed by a different entity. The
original website is managed by the developers. We consider an
adversary who is able to tamper with the program files hosted on
the external server. It could be the operator of the external hosting
platform or a hacker. In order to enable users to check the integrity
of the files they download from the external server, when clicking
on the link in the download page hosted on the original server, the
download page contains a checksum of the program, generated as
explained below.

3.2 Checksums and Digital Signatures
Checksum. A checksum is a fixed-size binary string derived from

a block of data of arbitrary size (e.g., a file): it is used to verify the
integrity of the data, i.e., that the data has not been corrupted
(e.g., when the data is transmitted or stored). In adversarial set-
tings, the output of cryptographic hash functions, called hashes
or digests, are used as checksums. Checksums are usually repre-
sented as hexadecimal strings (e.g., 2cae915ae0e...), the sizes of
which usually range from 32 digits (i.e., 128 bits) to 128 digits (i.e.,
512 bits). Cryptographic hash functions enjoy three core properties:
pre-image resistance, second pre-image resistance, and collision
resistance [33, 38]. In the settings of web downloads hosted on
external servers, the second property is key: It guarantees that it is
computationally hard for an adversary with access to the original
file (and its hash) to forge a different file (e.g., a malware) that has
the same hash. Essentially, an adversary would have to rely on
brute-force attacks, that is, to generate a huge number of different
versions of a program (e.g., by varying a number of innocuous bytes
such as strings in the program file) until it finds one with a hash
that matches that of the original file. An adversary can perform a
brute-force attack to forge a file with a hash that partially matches
that of the original file, namely partial pre-image attacks. In ad-
dition, hash functions usually ensure that even a minor change
(even just one bit) in the input data results in a completely different
output hash. That is, two checksums should be very different if
applied to very similar (but not identical) data.

Today, the most popular cryptographic hash functions are: MD5,
SHA-1, SHA-2 (with 256, 384 or 512 bits) and the upcoming SHA-3.
MD5 was one of the first proposed cryptographic hash functions;
it was broken in the late 1990’s and its use is strongly discouraged.

3https://github.com/caskroom/homebrew-cask/blob/master/Casks/vlc.rb

https://github.com/caskroom/homebrew-cask/blob/master/Casks/vlc.rb

Automating the Integrity Verification of Web Downloads for the Masses CCS ’18, October 15–19, 2018, Toronto, ON, Canada

SHA-1 was recommended by the National Institute of Standards
and Technology (NIST) until 2015, when it was broken. SHA-2 is
the most popular hash function today and it is currently the recom-
mended (by NIST) algorithm for file integrity verification [15].

For integrity verification, users must input the downloaded file
to a dedicated program (e.g., shasum) and compare the computed
checksum to the one specified on the download page.

Digital Signature. Digital signatures usually rely on asymmetric
cryptography. The signer (e.g., the developer) has a pair of crypto-
graphic keys: a public one, known to everyone, and a private one,
kept secret. By using their private key, the signer can generate a
fixed-size block of data, i.e., a (detached) digital signature, from a
file. Based on the signer’s public key, a user can verify the validity
of the signature and thus the integrity (and authenticity) of the cor-
responding file. To do so, users must input the downloaded file, the
signature and the public key of the signer to a dedicated program
(e.g., gpg). A popular cryptographic standard for digital signature is
OpenPGP4 that relies on the RSA and DSA cryptographic schemes.

3.3 Subresource Integrity
Subresource integrity (SRI) was introduced by theW3C in 2016 [49].
It specifies that, for external resources linked to a webpage through
an HTML element, an integrity attribute containing a checksum
can be added to the element.5 This mechanism was introduced
to detect corruption of externally hosted scripts. Therefore, in its
current form, SRI covers only two elements: the link6 and script.
These elements are used to include external style sheets (e.g., cascad-
ing style sheets–CSS) and scripts (e.g., JavaScript–JS) respectively.
The verification of the integrity of the subresources, based on the
provided checksum, is performed by the user agent, typically the
web browser. SRI is currently supported by all the major browser
except Internet Explorer.

4 SURVEY OF WEBSITES
In order to assess the current practices of developers regarding the
use of checksums and signatures7 in the context of web downloads,
we analyzed the download pages of various popular programs for
computers (not for smartphones), such as VLC media player.

4.1 Methodology
To obtain a list of software programs to analyze, we wanted to
focus on popular programs that can be freely downloaded on the
Internet and that have an associated checksum on their download
pages (on the official website). We started by looking at websites
from the Alexa top 500 ranking, but we were unable to find any
meaningful datasets, not to mention the fact that the number of
visits on the website is not necessarily correlated with the number
of downloads of the program. We then explored a second dataset
from App Annie that provides a list of popular apps but only for
mobile devices. A third possibility would have been to look at the

4https://www.openpgp.org
5https://developer.mozilla.org/en-US/docs/Web/Security/Subresource_Integrity
6The link element should not be confused with the a element which defines

hyperlinks users can click on to download files or to navigate to other webpages.
7For the sake of clarity, in this section, we refer to both digests produced by

cryptographic hash functions and signatures as checksums.

official app stores, but this wouldmake little sense, as those apps can
already be safely downloaded from there. In addition, some popular
apps are not on such app stores. Hence, we collected examples of
free software programs from within our lab as well as from lists of
popular free software gathered from the Web.8 We converged on
20 programs that (i) can be freely downloaded from their respective
websites, (ii) are provided with their associated checksums and
(iii) are from different app categories, according to Wikipedia. We
manually analyzed each of the download pages in a systematic way,
by checking the following properties:

• If the checksum and the program are hosted on the same
server, on different servers in the same domain, or on dif-
ferent servers in different domains. We compared the URLs
of the checksum file (or of the webpage, if the checksum is
embedded in the webpage) to that of the program. We per-
formed a complementary comparison of the corresponding
IP addresses.9 From a security point of view, it is better to
host the website and the program on different servers, as
this reduces the risks that an attacker can tamper with both
the checksum displayed on the page and program file. This
is less problematic for signatures as they cannot be forged.

• Whether the checksum and the program are served through
HTTP or HTTPS by default. From a security perspective,
HTTPS is better as it protects the integrity of the data while
in transit and authenticates the hosting website.

• Which cryptographic schemes are used to generate the
checksum (i.e., MD5, SHA1, SHA2 with 256 or 512 bits, or
PGP). As of today, both MD5 and SHA1 are considered inse-
cure and their use is strongly discouraged [15].

• Whether the webpage contains instructions on how to verify
the integrity of the downloaded program with the corre-
sponding checksum.

• Whether our browser extension (described in Section 6) can
extract the checksum from the original download page and
verify the integrity of the downloaded program.

We collected, whenever available, the average number of down-
loads per day. We conducted the survey in April 2018. To limit the
possible data collection errors, three experts from our lab indepen-
dently verified each website according to the properties above and
found no discrepancies. Table 1 shows the raw data of this survey.
Note that the Tor client was included in our survey, even though
it does not include a checksum (but includes a signature). This
is because the integrity of such a program is particularly impor-
tant, considering the contexts in which it is used (e.g., censorship
circumvention).

4.2 Results and Analysis
It is important to note that the list of analyzed programs is not
representative of all the programs available for download on the
Web. Therefore, the statistics derived from this survey are useful
mostly to obtain a sense of the current practices and the relevant
criteria regarding the use of checksums for securing web downloads
of programs. For future work, we intend to perform such an analysis

8See, e.g., https://www.techradar.com/news/the-best-open-source-software
9Note that this method is a heuristic; as such, it could induce both false positives

and false negatives.

https://www.openpgp.org
https://developer.mozilla.org/en-US/docs/Web/Security/Subresource_Integrity
https://www.techradar.com/news/the-best-open-source-software

CCS ’18, October 15–19, 2018, Toronto, ON, Canada Mauro Cherubini et al.

name description host checksum program MD5 SHA1 SHA2 PGP ext. instr. #dl/day
Android Studio programming suite diff. domain https https ✗ ✗ ✓ ✗ ✓ ✗ -
Audacity audio editor diff. domain http https ✗ ✗ ✓ ✗ ✗ ✗ 6k
Blender 3D graphics editor diff. domain https https ✓ ✗ ✗ ✗ ✗ ✗ 16k
FileZilla FTP client diff. domain https https ✗ ✗ ✗ ✗ ✗ ✗ 11k
GIMP raster graphics editor diff. domain* https https ✓ ✗ ✗ ✗ ✓ ✗ -
GnuPG cryptographic suite same server https https ✗ ✓ ✗ ✓ ✗ ✓ -
Handbrake video transcoder diff. domain* https https ✗ ✓ ✓ ✓ ✓ ✓ -
Inkscape vector graphics editor same server https https ✓ ✗ ✗ ✗ ✗ ✗ -
IntelliJ programming suite same server https https ✗ ✗ ✓ ✗ ✗ ✗ -
KeePass password manager diff. domain https https ✗ ✗ ✗ ✗ ✗ ✗ 15k
Notepad++ text editor same server https https ✓ ✓ ✗ ✗ ✗ ✗ -
OpenOffice office suite diff. domain https https ✓ ✗ ✓ ✓ ✗ ✓ 85k
Plex media server same server https https ✗ ✗ ✓ ✗ ✓ ✗ -
RealVNC remote administration same server https https ✗ ✗ ✓ ✗ ✓ ✗ -
SpyBot antivirus same server https https ✓ ✓ ✓ ✗ ✗ ✗ -
Tor anonymity network same server https https ✗ ✗ ✗ ✓ ✗ ✓ 90k
Transmission BitTorrent client diff. domain https https ✗ ✗ ✓ ✗ ✓ ✗ -
Ubuntu operating system same server http http ✓ ✓ ✓ ✓ ✗ ✓ -
VLC media player diff. domain https https ✗ ✗ ✓ ✗ ✓ ✗ 527k
VMware Fusion virtual machine hypervisor diff. server https https ✓ ✓ ✓ ✗ ✗ ✓ -

Table 1: Raw results of the website survey on the use of checksum on the download pages of popular programs. “ext.” stands
for “extension”, “instr.” for “instructions”, and “#dl/day” for “average number of downloads per day”. In the host column, the
“*” denotes that, although the program and the checksum files are hosted on the same server, they are also mirrored on a
different server (typically under a different domain).

on a much larger scale, which would also enable us to assess the
prevalence of checksums on the web.

From the results, we observe the following. First, 2 out of 20
(2/20) websites did not serve the checksum in a secure way (i.e.,
over HTTPS). This is problematic, as the webpage and the checksum
it contains could be tampered with by an adversary through a man-
in-the-middle attack. It should be noted, however, that, for Audacity,
even though the website was by default served over HTTP, it was
also possible to retrieve it over HTTPS. Second, 9/20 websites host
the checksum and the program on the same server (according to
our heuristic). This could be problematic, as an adversary who is
able to break into the server could tamper with both the program
file and its checksum, hence cover up the tampering.

We also observed that 7/20 websites include multiple checksums
(e.g., Handbrake with SHA1 and SHA2), possibly in combination
with PGP signatures (e.g., OpenOffice). A non-negligible fraction
(5/20) of the websites analyzed (e.g., Blender and GIMP) include
only checksums generated from weak hash functions, namely MD5
and SHA1. Furthermore, only 6/20 websites (e.g., OpenOffice and
GnuPG) include instructions on how to verify checksums or a
description of their utility. Finally, the fact that our extension does
not work on 13/20 analyzed websites is due to the fact that it is
currently instrumented to work in the cases were the checksum
is available in the HTML code of the same website that contains
the link to the program file. If the checksum is stored in a separate
file, our extension would currently not detect it. As for Tor, the
download page includes a detached signature (hosted on the same
server, but this is not a problem for signatures) together with the
instructions to check it.

In summary, due to frequent flaws in the way checksums are
currently used (e.g., insecure communication, single server, weak
hash function) and the lack of details on their utility and how-to
guides, checksums do not achieve their full potential in securing
web downloads.

5 LARGE-SCALE USER SURVEY
To date, little research has focused on the problem of checksum
verification. In particular, we know little about the proportion of
Internet users who know about checksums and those who regularly
apply checksum verification to their downloads. Therefore, we
pose the following research questions: (RQ1) Which proportion
of Internet users install programs that are manually downloaded
directly from websites, therefore exposing themselves to potentially
corrupted programs? (RQ2)What proportion of Internet users know
about checksum verification methods? Among those who know, how
many actually do it when they download programs from developer
websites?

5.1 Methodology
In order to study the current security behaviors of Internet users,
and the associated risks, with respect to programs downloaded from
the Internet and to answer the above research questions, we con-
ducted a large-scale online user survey. The survey was approved
by our institution’s ethics committee. We contracted a vendor to
deploy and conduct the survey; the vendor was in charge of select-
ing a representative sample, in terms of demographics, of Internet
users based in the US [23]. The panelists were recruited via partner-
ships and invited via banners and messaging, and then go through
quality controls. Panelists receive virtual points in exchange for

Automating the Integrity Verification of Web Downloads for the Masses CCS ’18, October 15–19, 2018, Toronto, ON, Canada

their participation in active research campaigns, which can be later
redeemed for donations to charity or for vouchers to buy goods and
services. The total cost of the survey was ∼USD 5600 with an av-
erage incentive of ∼USD 1.9/participant (excluding administrative
costs).

We deployed the questionnaire twice in order to collect both
qualitative and quantitative information from participants while
avoiding potential biases in the answers. The first deployment (Q1)
lasted one week and some of the questions were left as open ended.
We collected responses from around 200 participants. Qualitative
answers provided for Questions A5, A7, and A10 (see Appendix A)
were categorized at the end of the week by two coders. The code-
book was developed through inductive analysis and it was used to
define multiple-choice questions for the second deployment of the
questionnaire (Q2). We measured inter-coder agreement through
Cohen’s kappa at 0.89 and judged it sufficient. The few cases of
conflict were resolved via discussion. Before deployment of Q1, to
improve the effectiveness and readability of the questions, we con-
ducted a cognitive pretest of the questions with 5 test participants.
For instance one of the changes consisted in simplifying language.
Instead of using technical terms such as “checksums”, we mainly
used: “sequences of numbers and characters”. The questionnaire
Q2 was deployed in April 2018. It should be noted that, as for most
user surveys on security-related behavior, the information reported
by the respondents might not exactly reflect their actual behav-
iors; this fact is well documented in the literature (see for instance
Egelman et al. [17]).

5.2 Demographics and General Statistics
Two thousand valid responses were collected (N = 2,000) from
questionnaire Q2. The proportion of female respondents was 51%
and the age distribution was as follows: 18-29 (22%, or 440 respon-
dents), 30-39 (17%, or 340), 40-49 (19%, or 380), 50-59 (18%, or 360),
60+ (24%, or 480). Respondents were well distributed across the
four macro regions of the US: 22.1% (or 442) live in the Midwest,
20.1% (or 401) live in the Northeast, 34.2% (or 683) live in the South,
and 23.7% (or 474) live in the West.

The large majority of the respondents (90.6%) use a laptop or
desktop computer; the remaining 9.4% (or 189) use only a smart-
phone or tablet. Of those who use a computer, 75.9% use a computer
running Windows, 12.4% use a computer running macOS, and 2.3%
use a computer running Linux (A1). For the remaining of the sta-
tistics in this section, we will always refer to respondents who
use a computer. We found that 89.7% of the respondents owned a
smartphone, 8.5% owned a feature phone, and 1.8% did not own
a mobile phone. We leave studying downloads of mobile apps to
future work.

5.3 Results and Analysis
RQ1. In our survey (A4), 29.4% of the respondents declared to

never run any program downloaded from the Internet or to do so
from official app stores exclusively (6.1%), which could be consid-
ered a safe behavior. Out of the remaining 70.6% of the respondents,
58.6% declared downloading content from developers’ websites,
and 42.6% using P2P networks at least once a year. The majority
of respondents using computers (62.2%) declared using official app

stores (e.g., Mac App Store) for downloading programs. However,
only 6.1% of respondents used this source exclusively. These results
reveal that the large majority of Internet users are exposed to po-
tential corruption of externally hosted programs, thus confirming
the relevance of this research.

RQ2. For a final question, we asked (A9) our respondents whether
they had ever noticed checksums on websites and (A10) what they
would do with them if they ever found them when downloading
programs. We found that 23.4% of respondents remembered seeing
them on websites they used in the past. Concerning what they
would do with them, most selected responses had nothing to do
with what checksums are meant for (83% see Question A10). Inter-
estingly, for 18.2% of the respondents, displaying the checksums
on the webpage of the app would make them doubt of the website
and search for something else. Consequently, using this security
technology would be detrimental to the overall user experience.
About 11.8% of the respondents would simply ignore checksums
and continue installing the app. Regarding the purpose of check-
sums, only 5.2% of the respondents selected the correct answer (out
of 6 possible options, plus the “not sure” and “other” options), i.e.,
to check the integrity of the downloaded programs. Therefore, we
can estimate the proportion of users who know about checksums
between 1.7% and 5.2%.

5.4 Summary
The results of the large-scale survey revealed that, based on Internet
user behaviors, corruption of externally hosted programs could
have a substantial negative effect. Integrity verification offers a
defense against this. Unfortunately, only a tiny fraction of Internet
users knows about this security technology and uses it on a regular
basis. Developers, who rely on checksums, currently require users
to perform the check manually. We learned, however, that this
might be perceived negatively by less experienced users and might
lead to users preferring a different developer.

5.5 Limitations
After the deployment of the survey, we realized that some of the
terminology and the wording of the questions could have led to an
ambiguous interpretation. For instance, in question A4, we did not
provide any examples of P2P programs. Furthermore, the distinction
between ‘developer’ and ‘vendor’ might not have been entirely clear
to the respondents.

6 AUTOMATING CHECKSUM VERIFICATION
In the previous sections, we demonstrated through various surveys
and experiments that checksums currently do not fully achieve
their goals of securing web downloads. One of the main causes
is that the task of computing and verifying checksums needs to
be done manually by the users. In addition, checksums are not
widespread on the web and Internet users are unaware of their
utility and usage. In this section, we address these problems by
proposing both recommendations and technical solutions that we
designed, implemented and made available for testing (see below).
Our solutions address the problems of generating, computing and
verifying checksums.

CCS ’18, October 15–19, 2018, Toronto, ON, Canada Mauro Cherubini et al.

6.1 Extending Subresource Integrity to Links
A direct solution for making checksum verifications automatic
is to extend the subresource integrity (SRI) feature [49], recently
introduced by the W3C and described in Section 3, to HTML a
elements (i.e., hyperlinks) that point to files to be downloaded.

Our proposal is to include an integrity attribute to the a ele-
ments, and optionally the meta and iframe elements, as web devel-
opers sometimes rely on them to trigger automatic downloads. Be-
low, we give an example hyperlink that specifies, in an integrity
attribute, the checksum of the file it points to.10

<a href="https://github.com/.../Transmission-2.93.dmg"
integrity="sha256-Yc2bdMxUJFj...">download

Upon a successful download of a file pointed to by a hyperlink that
includes an integrity attribute, the integrity of the downloaded
file should be checked by the user agent (i.e., the web browser or a
web browser extension) by comparing its (computed) checksum to
the one specified in the integrity attribute.

6.2 Checksum Verification: Browser Extension
As web browsers do not currently handle SRI for hyperlinks, to
automatically check the integrity of downloaded files, we devel-
oped a Chrome extension11. This extension should, of course, be
considered as a proof of concept and not as a final product.

Design and Implementation. Our extension supports three popu-
lar algorithms used to generate checksums: the MD5, SHA-1 and
SHA-2 hash functions,12 and PGP signatures (partially). It is imple-
mented in JS and it relies on the md5.js library for computing MD5
digests,13 the asmcrypto.js library for computing SHA digests,14
and the openpgp.js library for checking PGP signatures. In total, the
extension consists of ∼400 lines of JavaScript code (excluding the
libraries); it requires permission to access the browser’s download
manager in order to initiate and monitor downloads, as well as
read-only access to the file system in order to compute the digests
of the downloaded files.

As SRI for hyperlinks is currently not supported by web develop-
ers, our extension is also capable of extracting checksums directly
from the text of HTML pages, thus requiring no changes to existing
websites such as VLC. It operates as follows:

(1) For each visited webpage, it navigates the HTML DOM
tree and extract, by using regular expressions, hexadecimal
strings that have the same format as checksums as well as
the corresponding hash function names (e.g., SHA-1).

(2) If checksums are detected (on the webpage or in the
integrity attribute of the a element), it intercepts click
events triggered by hyperlinks. If a hyperlink points to a file
with a sensitive extension (e.g., dmg, exe, pkg) and/or mime

10For PGP, the integrity attributes include the string “pgp”, the ID and fingerprint
of the PGP key used for generating the signature, and the base-64 representation of
the detached signature of the file.

11Ideally, such verifications should be performed by the web browser. One option
would be to integrate directly in the Chromium open-source browser project.

12We chose to support the MD5 and SHA-1 functions despite their known weak-
nesses because they are still used, as mentioned in Section 4.

13https://github.com/blueimp/JavaScript-MD5
14https://github.com/asmcrypto/asmcrypto.js

Figure 1: Screenshot of the extension on the Plex download
page (https://www.plex.tv/downloads/). The checksum of
the downloaded file is computed and successfully checked
against that extracted from the webpage (highlighted).

type15 (e.g., application/x-apple-diskimage, application/x-
msdownload, application/x-debian-package),16 the down-
load is followed by the verification of the checksum, essen-
tially a comparison between the checksum that is detected
and the one computed from the downloaded file.

(3) If multiple checksums are extracted from the webpage, the
verification is considered successful, as long as the computed
checksummatches any one of them.17 Thewebpage is greyed
out and a pop-up message is displayed to the user, as illus-
trated in Figure 1. Additionally, if the checksum originates
from the text of the webpage, the matching text with the
checksum is revealed (if originally hidden) and highlighted.

The extension displays a general message to the user and a sta-
tus indicator (e.g., “downloading”, “computing checksum”) with
an animation. Additionally, it can show four different messages
according to the result of the verification (Figure 2), depending on
the origin of the checksum (webpage text or integrity attribute)
and on the outcome of the verification (success or failure). In the
case of failure, users are offered the option to delete the possibly
corrupted downloaded file (through a link). Clearly, there are mul-
tiple ways to communicate the result of the verification to the user,
and the UI elements have a significant effect on the usability of our
extension [7]. For the initial proof of concept, we experimented
with the four messages shown in Figure 2. A careful consideration
of alternatives that incorporate user feedback should be conducted

15The mime type is determined by issuing a HEAD request to the target of the
link.

16The complete list was built based on the extension-mime types mappings of the
Apache and nginx web servers.

17Note that this reduces only slightly the security of the verification procedure
as download pages usually contains only a few checksums (8 at most in the websites
we surveyed, i.e., for Android Studio). As part of future work, we intend to match
automatically checksums to download links by analyzing the DOM of the webpages.

https://github.com/blueimp/JavaScript-MD5
https://github.com/asmcrypto/asmcrypto.js
https://www.plex.tv/downloads/

Automating the Integrity Verification of Web Downloads for the Masses CCS ’18, October 15–19, 2018, Toronto, ON, Canada

before the actual deployment in a product. We leave the careful
design of the extension user interface for future work.

Figure 2: Messages displayed by the browser extension: left
(integrity attribute) / right (text of the webpage), top (suc-
cess) / bottom (failure).

The extension can be downloaded from at the following ad-
dress: https://checksum-lab.github.io/chrome_extension.zip.18 A
test webpage can also be found at the following address: https:
//checksum-lab.github.io/. It contains test download links with and
without (valid/invalid) integrity attributes and links to the download
pages (that include checksums) of popular software (e.g., Android
Studio, Plex, VLC) onwhich the extension can be successfully tested.
Alternatively, a demo video can be downloaded at the following
address: https://checksum-lab.github.io/demo.mp4.

Shortcomings and Perspectives. There are several limitations and
missing features that we intend to address in the future. First, the UI
and the textual messages of the browser extension should be care-
fully designed by taking into account user feedback (see Section 7.4
for more details) and best practices for the design of security warn-
ings (see for instance [7, 8, 11, 16, 18, 21, 30, 40–42]). Second, the
extension does not handle the case of concurrent downloads from
the same tab (e.g., multiple downloads from the same webpage).
Third, the extension works only when the checksum and the direct
link to the file are on the same page; for instance, the case where
a download link redirects to a page with an automatic download
based on a meta or iframe element is not supported. Similarly, it
does not support the case where the checksums are in a separate file
linked on the download page. Furthermore, it does not include any
settings UI for managing the features, such as disabling the exten-
sion on certain websites or making the verification process silent
(e.g., do not show any message and simply delete the file in the
background if the checksum does not match). Finally, the extension
currently does not alert users when no checksums are available on
the website, for any of the downloaded files. Finding the optimal
way of informing users of such aspects is another design problem
we intend to address by reviewing the best practices for security
warning design, and by conducting additional user studies.

6.3 Checksum Generation: CMS Extension
In order for web browsers to automatically verify checksums as
described above, checksums must be embedded in download links.
Therefore, to alleviate the burden on the website administrators, we
developed a tool to automatically generate and embed checksums
in download links for websites that are managed through a Content
Management Systems (CMS).

18Instructions: Download the zip file and unzip it. In the extension tab of Chrome,
activate developer mode and load the extension by clicking on the “Load unpacked”
button and selecting the folder where the extension was unzipped.

Design and Implementation. Because a substantial fraction of
websites are powered by content management systems (CMS), and
by WordPress in particular,19 we implemented our tool in the form
of a WordPress extension.

Our WordPress extension is implemented as a hook for the
page/post update operation. Similarly to the Chrome extension,
it should be considered as a proof of concept. It consists of ∼100
lines of PHP code; it can be downloaded at the following address for
testing purposes: https://checksum-lab.github.io/wordpress_plugin.
html. The extension parses the HTML code of the page and extracts
all the links (i.e., the a elements). For each link, the extension de-
termines the mime type of the target by making a HTTP HEAD
request on the server side. If the target is downloadable (i.e., not
a webpage, or more generally, content that is not displayed in the
browser), the extension fetches it (by making a HTTP GET request
on the server side), computes the SHA-2 checksum and embeds it
in the corresponding link, i.e., in an integrity attribute of the a
element. For performance reasons, the computed checksums are
cached in a database. Yet, they can be refreshed on demand, in
order to adapt to potential changes of the linked file at different
points in time. Moreover, the extension can be further enhanced
to automatically re-compute the checksums for the target of the
links (i.e., the a element) and to alert the website administrator in
case of changes (caused by file update or corruption). It should be
noted that downloading the file on the server side could be avoided
by using the content-md5 [22] or instance digest [31] feature
of HTTP. Unfortunately, because the former is deprecated and the
latter is not standardized, neither are supported by major HTTP
servers. In the production version of the extension, we intend to
implement the download and the checksum computation in an
asynchronous fashion and to include a configuration widget in the
HTML editor that is embedded into WordPress.

7 USER EXPERIMENT
In this section, we study the usability and the effectiveness of check-
sums in the context of web downloads. More specifically, we pose
the following research questions: (RQ3) Do users thoroughly verify
checksums?, (RQ4) Can users be fooled by replacing some characters
in the middle of the checksum?, (RQ5) Does automating the checksum
verification improve general usability metrics?

In order to answer the above questions, we conducted an in situ
user experiment involving an eye-tracking screen. This methodol-
ogy has been used extensively in the last decade to study usability
of new services, programs or mobile apps as it enables the collec-
tion of accurate objective measurements of where the user looks
on the screen without obtruding or disturbing their action [32].
The two metrics extracted through this method were the total num-
ber of fixations and the total dwell time. Fixations are indicative of
the amount of processing being applied to objects at the point-of-
regard [25]. A longer dwell time indicates difficulty in extracting
information, or it means that the object is more engaging in some
way [28]. Our hypothesis was that participants who checked thor-
oughly the checksums would have to produce more fixations (and

19WordPress is the most widely used CMS; according to W3Tech (https://w3techs.
com/technologies/overview/content_management/all; Last visited: March 2018), about
51% of all websites are powered by a CMS and 31% of all websites are powered by
WordPress.

https://checksum-lab.github.io/chrome_extension.zip
https://checksum-lab.github.io/
https://checksum-lab.github.io/
https://checksum-lab.github.io/demo.mp4
https://checksum-lab.github.io/wordpress_plugin.html
https://checksum-lab.github.io/wordpress_plugin.html
https://w3techs.com/technologies/overview/content_management/all
https://w3techs.com/technologies/overview/content_management/all

CCS ’18, October 15–19, 2018, Toronto, ON, Canada Mauro Cherubini et al.

spend more time fixating) in the part of the user interface where
these sequences were displayed.

The experiment was split in two phases. During the first phase,
we asked participants to verify manually the checksums of four
downloaded apps (this was addressing RQ3 and RQ4). In the second
part of the experiment, we activated a browser extension that took
care of verifying the integrity of the downloaded files based on
their checksums (this was addressing RQ5). We did not counter-
balance the presentation of these two parts for two reasons: (i) the
second part of the experiment made explicit what the core of the
experiment was and could have biased the results of the first part;
(ii) the two parts of the study addressed different research questions.
However, this design also had drawbacks that we report below in
Section 7.4. The experiment was approved by our institution’s ethics
committee.

7.1 Participants
We recruited the participants of our experiment from a student
population through flyers displayed on two university campuses
(i.e., UNIL and EPFL in Lausanne, Switzerland). To sign up for
the experiment, potential subjects had to fill an online screening
questionnaire first. In this questionnaire, they were asked about
their basic demographic information (age and gender), major field
of study, knowledge of checksums (i.e., “Do you know how and
what for the elements circled in red on the following screenshots
are used?20 If yes, please describe it briefly in the text box below.”),
tech savviness (i.e., “Check the technical terms related to computers
that you understand well: ad-blocker, digest, firewall, VPN, etc.).
Finally, we asked which was the OS of their main computer.

We selected a total of 40 subjects (out of the 120 who completed
the screener) and invited them to participate in the experiment.
We number of participant was chosen so that it provides sufficient
power to the statistical tests and keeps the total duration of the
experimentations reasonable (we had only one eye-tracker). The
sample was selected to maximize diversity. About half of the partic-
ipants were macOS users (i.e., 21/40, that is 53%) and half Windows
users (the actual breakdown in terms of operating systems among
the participants who filled the screener was 56% macOS, 41% Win-
dows, 3% Linux). The subject pool included 40% of female subjects
and it was diverse in terms of major fields of studies, with more than
15 different majors represented. The average age of the subjects was
22.5±2.9. Out of the 40 subjects, 12 (30%) knew about checksums,
33 (83%) downloaded programs from developers websites and 20
(50%) from app stores, and 25 (63%) had an antivirus installed on
their computers. The experiment took approximately 50 minutes
per person to complete and the participants were compensated
with CHF 20 (∼USD 20). The whole experiment was conducted in
French (i.e., the local language in Lausanne).

7.2 Apparatus
The experiment took place in a UX-lab, a small room with a desktop
computer. The computer was equipped with an eye-tracking system
(maker Tobii, model X2-6021) which was sampling gaze at 60Hz.

20The screenshot depicted the official VLC download page with checksums circled.
21https://www.tobiipro.com/product-listing/tobii-pro-x2-60/

Two cameras and a few microphones were also placed in the room
to record the experiment.

Depending on the OS the participant was most familiar with (ei-
ther macOS or Windows), we switched the computer that was used
by the participants during the course of the experiment. Aside from
the OS, the employed apps and the layout of the windows were the
same on the two different OSes. Three windows were placed and
arranged on the screen: the web browser (Chrome) that occupied
the left half of the screen, the “Downloads” folder (Windows ex-
plorer/macOS finder) that occupied the top right quadrant, and the
terminal that occupied the bottom right quadrant (see Figure 3).
Participants were asked to not change the position of the three
windows, and scrolling was disabled in the browser in order to
reduce shifts in the areas of interest (AOI) of the screen that were
displaying the checksums.

All necessary pages were pre-loaded in the browser window
in different tabs. We tampered with the checksum on the third
webpage (i.e., Transmission) for the first part of the study and the
second webpage (i.e., Audacity) for the second part of the study. All
the other checksums were correct. Based on our running hypothesis
that users check only the first and last digits of the checksum, we
changed the 44 digits (out of 64) in the middle of the checksums; this
means that only the first and last 10 digits remained unchanged.22

7.3 Procedure
First and foremost, we informed the participants that they would be
recorded during the course of the experiment (and about our data
management plan, including data anonymization and retention)
and we asked them to sign, if they agreed, an informed consent
agreement. We told the participants that we were conducting a
study on the way people download applications on their computers
and that they had to download several applications on the lab com-
puter. We asked the participants to behave as if they were using
their own computer and we told them to not hesitate to call the
experimenter in case of doubts or problems. We also explained
that the experimenter had nothing to do with the design and im-
plementation of the extension, therefore, the participants could
freely express negative opinions without the risk of affecting the
experimenter.

Next, we asked participants several preliminary questions,
mainly to confirm some of the information they provided in the
screener: the OS of their computer, whether they had an antivirus
installed and whether they downloaded apps from the Internet from
places other than official app stores. Then, we asked the partici-
pants to sit at the computer, and a 13-point calibration procedure
for the eye-tracking system was completed. Finally, the participants
were given a checklist containing the steps to follow during the
session. All materials were prepared in French and the sessions
were conducted in French, which the main language spoken where
the study was conducted.

First Phase. We asked the participants to download from the
official website and execute/install four different programs (in this

22We considered, as in [39], that a realistic adversary can forge, through brute-force,
a corrupted program in such a way that the first and last 10 digits of its checksum
match those of the original program’s checksum.

https://www.tobiipro.com/product-listing/tobii-pro-x2-60/

Automating the Integrity Verification of Web Downloads for the Masses CCS ’18, October 15–19, 2018, Toronto, ON, Canada

Figure 3: Screenshot of the window arrangement on the computer used for the experiment (macOS). The left half of the screen
is occupied by the Chrome web browser in which multiple tabs have been pre-opened: the download pages of the first four
programs, the extension tab to activate the extension, the download pages of the next two programs, and the questionnaire
website (Qualtrics) for the exit survey. The right half of the screen is occupied by the terminal application where the partic-
ipants must type the command lines to compute the checksums of the downloaded programs (bottom) and the “Downloads”
folder (top) were the programs downloaded from the browser are placed; the participants had to click on the icons of the
downloaded programs (in that window) to execute them.

specific order): VLC, Handbrake, Transmission, and Android Studio.
Specifically, for each application, the participants were asked to

(1) Download the application. For the sake of simplicity, the
download webpages were already opened in individual tabs
of the web browser.

(2) Compute the checksum of the downloaded program and com-
pare it to that specified on the webpage. The participants
were provided with the exact command to type in the termi-
nal, e.g., clear ; shasum -a 256 Handbrake-1.1.0.dmg
for macOS.23 All the checksums were SHA-2 with 256 bits.

(3) Run the program and report some information on the in-
struction leaflet: program version and copyright years found
in the “About” box (macOS) or digital certificate issuer (Win-
dows). The purpose of this last step was to avoid calling too
much attention to the checksum verification as being the
core of the experiment.

23The clear command is used to ensure that the checksum is always displayed at
the same location on the screen, for eye-tracking purposes.

As explained in the previous subsection, the checksum of the third
webpage, i.e., Transmission, was set to be incorrect.

Second Phase. We asked the participants to activate the extension
(by clicking on a button in the fifth tab of the browser), and to
download and run/install two additional applications i.e., RealVNC
and Audacity, in this order.We asked the participants to perform the
same steps as in the first phase, except from the manual checksum
verification that was automated by our browser extension. The
first application’s checksum was correct, resulting in the display
of a confirmation message by the browser extension (see Figure 1),
whereas the second one was incorrect, hence resulting in the display
of a warning message (see at the bottom right of Figure 2). The
terminology used in the messages was inspired by the instructions
found on the download pages of popular programs (e.g., Ubuntu).
We recognize that it could be improved with a better design and
with user feedback. We intend to revise the design of the extension
in the future.

CCS ’18, October 15–19, 2018, Toronto, ON, Canada Mauro Cherubini et al.

(a) Thorough verification of a correct checksum (b) Succeeded verification of an incorrect checksum
(i.e., mismatch detected)

(c) Failed verification of an incorrect checksum
(i.e., mismatch not detected)

Figure 4: Sample subject gaze heat maps captured by the eye-tracking system on macOS.

For the last step, we asked the participants to fill a short ques-
tionnaire online to get some feedback about their perception of the
manual verification of checksums and of the browser extension,
satisfaction with the extension and net promoter score.

7.4 Results
We describe and analyze the results related to the manual verifi-
cation of checksums (first phase), and then report on the usability
and effectiveness of the browser extension (second phase).

In order to study the gaze behavior, in our analysis, we sur-
rounded the parts of the UI that displayed the checksums, and we
labelled each area. These were the AOIs described prior in the text.
Unfortunately, we had to remove eye-tracking recording for one
participant due to corrupted data.

Figure 5: Areas of interest used for the checksums displayed
in the terminal.

RQ3. From a qualitative analysis of the fixation heatmaps of the
participants looking at the AOIs that contained the checksums, we
could observe three distinct behaviors: (a) some participants pro-
duced extensive fixations throughout the sequence of characters
(i.e., the checksum) covering most/all of the sequence; (b) other
participants produced less fixations but still “sampled” the sequence
at several points from beginning to end; (c) finally some other par-
ticipants produced fewer fixations in the AOIs, typically pointing to
the beginning and the end of the sequence. Examples of these three
behaviors can be seen in Figure 4. While the first two behaviors
typically led to identifying the incorrect checksum, the third was
typically associated with not identifying the incorrect checksums.
This was confirmed by our quantitative analysis presented below.

To understand whether all the digits of the checksum were
treated equally by the participants, we further subdivided the area
where the checksum is displayed in four sub-AOIs (see Figure 5)
and measured differences of the total number of fixations falling in
each of these areas. As the assumptions for parametric inferential
statistics were violated, we used nonparametric statistics for the
subsequent quantitative analysis.24

24Concerning the total number of fixations, the Shapiro-Wilk normality tests were
close to rejection: AOI 1 - (W = .95, p = 0.085), AOI 2 - (W = .94, p = 0.027),

●

●

AOI 1 AOI 2 AOI 3 AOI 4

0

10

20

30

40

50

60

Area of Interest

N
u

m
b

e
r

o
f

fi
x
a

ti
o

n
s

Figure 6: Boxplots of the distribution of user fixations across
the four areas of interests covering the checksums.

AOI 1 2 3 4
1 - 445** 756*** 773***
2 - - 709*** 688***
3 - - - 518***
4 - - - -

*p < 0.05, **p < 0.01, ***p < 0.001
Table 2: Wilcoxon signed rank tests of the number of fixa-
tions within the four areas of interest covering the check-
sums. Due to ex aequos in the data, the p-value is an approx-
imation.

We conducted a Friedman test of differences among repeated
measures to compare the total number of fixations that fell in each
of the four sub-AOIs. There was a significant difference in the
scores: AOI 1 - M=25.15, SD= 13.11, AOI 2 - M=21.92, SD= 13.96,
AOI 3 - M=13.92, SD= 9.55, and AOI 4 - M=10.58, SD= 6.99; χ2(3)
= 77.32, p < 0.001. Six Wilcoxon signed rank tests with continuity
correction were conducted to make post-hoc comparisons between
AOIs. All the tests indicated that there was a significant difference
between the number of fixations falling in each AOI. We include
the detailed results of the tests and the boxplot of the distribution of
fixations for each AOI, in Figure 6 and Table 2. These results suggest
that the attention given to the digits of the checksum is highest at

AOI 3 - (W = .94, p = 0.037), AOI 4 - (W = .92, p = 0.008) and the assumption of
homoscedasticity was violated when using the Modified Levene’s Test (F = 6.23, p <
0.001). The conclusion was similar for the total dwell time.

Automating the Integrity Verification of Web Downloads for the Masses CCS ’18, October 15–19, 2018, Toronto, ON, Canada

the beginning and decreases as we progress in the sequence. This
means that a partial pre-image attack should focus on keeping the
first digits of the checksum unchanged.

RQ4. We observed that 15 (38%) of the participants did not detect
the mismatch (for Transmission) between the checksum displayed
on the download webpage and the checksum computed from the
downloaded file (displayed in the terminal). This constitutes a sub-
stantial proportion of our subject pool. This number could be higher
in real life as the subjects are likely to be more careful in a con-
trolled environment compared to a situation where they are eager
to run the program they just downloaded. We did not find a signifi-
cant difference in the detection rate for participants who had prior
checksum knowledge (p = 1, Fisher’s exact test). Participants with
prior knowledge understand better the importance and functioning
of checksums but, at the same time, they might be more sloppy
in their verification as they know that an accidental modification
would very likely change the first digits of the checksum. The same
result – specifically the lack of difference between the group of
participants who were knowledgeable and those who were not –
was observed for the previous results on RQ3.

To study more quantitatively if some behavioral differences ex-
isted between those who detected the mismatch and those who did
not, we operated a post-hoc split of the participants. A Wilcoxon
rank sum test was conducted to compare the total number of fixa-
tions in the AOIs for the two groups. The values of the task with the
modified checksum were not considered in order to compare the
usual behavior. There was a significant difference in the number
of fixations for participants who detected the corrupted checksum
(M=12.47 fixations, SD=5.01) and those who did not (M=3.88 fix-
ations, SD=2.09); W=338.5, p < 0.001. Furthermore, the same test
was conducted to compare total dwell time in the AOIs for the
two groups. There was a significant difference in the amount of
time spent in the checksum AOIs for participants who detected the
corrupted checksum (M=15.63 seconds, SD=9.50) and those who
did not (M=3.97 seconds, SD=2.60); W=333, p < 0.001.

These results suggest that participants who detected the cor-
rupted checksum fixated the checksums significantly more fre-
quently and spent significantly more time than those who did not
detect the mismatch. The observed ratios between the two behav-
iors were approximately 4:1. This analysis was also extended to
tasks 1, 2 and 4 for the two groups of participants (i.e., those who
detected the mismatch vs. those who did not). We observed the
same difference reported for Task 3; this reveals that those who
were thorough were consistently so, during the entire experiment.

RQ5. We now report the results of our user experiment related to
the browser extension carried out in the second phase. As explained
in Section 7, in order to study user reaction to the messages dis-
played by the extension and to collect user feedback, in the second
phase of our user experiment (with eye tracking), we asked the
subjects to activate the extension and to download two programs
(RealVNC and Audacity) from the corresponding official websites.
The checksum of the second download (Audacity) was incorrect.

During the experiment, 40% of the participants stopped when
shown the warning message for the (corrupted) Audacity download.
For those who did not, the reason they reported most frequently
(in the exit survey) was that they tend to ignore popups shown on

webpage systematically because they are too frequent and often
irrelevant or even scams.

Among the participants who did stop, 50% removed the download
file: 37.5% of them clicked on the dedicated “delete” link embedded
in the warning message to delete the (corrupted) downloaded file
and the remaining 62.5% manually removed the file.

In the exit survey, the participants reported an average satis-
faction score of 5.2±1.4 (on a scale from 1 to 7).25 Furthermore,
the participants reported an average desirability score of 4.6±1.9
(“Should the extension be available for download, how likely would
you be to use it?”), with 55% of the participants answering posi-
tively, and an average net promoter score of 4.5±1.9 (“How likely
would you be to recommend it to a friend or relative?”), with 55%
of the participants answering positively. In these questions, the
comparison was implicit to the status-quo offered by the command-
line interface that the participants tested in the first part of the
experiment.

Another observation from the user experiment was that 26/40
participants (65%) could not explain the objective of integrity verifi-
cation in the exit questionnaire (before the debriefing). This reveals
the inability of non-technical users to grasp the concept behind
checksum-based integrity verification.

Finally, the participants gave us feedback on the messages dis-
played by the browser extension. The main comments were the
following: The terminology used in the message was too technical
or unclear (7 participants): “Plutôt sobre je trouve bien mais pour un
neophyte, il n’est pas très clair par rapport à son rôle. (It is rather sober
I think but for a newbie it is not clear enough in relation to its role)”;
the popup did not sufficiently catch their attention (4 participants)–
they suggested using larger icons and using colors for the text
messages themselves or even to remove the icons–:“Sans le petit
logo vert, qui fait penser à celui d’un antivirus, c’est personnellement
le genre de message auquel je fais très rarement attention. (The little
green logo, which makes me think about an antivirus, should be re-
moved as it is the kind of message that I would rarely pay attention
to.)”; the design of the skip button allowed participants to easily
skip it (2 participants): Pour éviter que le message ne soit fermé tout
de suite, il faudrait peut-être bloquer le reste de la navigation tant
que le message n’est pas fermé. Ou le laisser ouvert obligatoirement
pendant quelques secondes. (To prevent the user from immediately
dismissing the message the message, it would be necessary to block
the user from pursuing navigation until the message is closed. Or to
force the message to remain open for a few seconds). . Interestingly,
during the informal feedback with the experimenter, several par-
ticipants reported that they are, in general, annoyed by popups
displayed within webpages and tend to ignore them.26 Also, they
mentioned that a warning originating directly from the browser in
a standalone window would have been more effective.

During the experiment, we also received positive feedback on
the extension. Several participants commented positively that the
design of the message and the terms used were clear: Le message est
assez clair et explique bien pourquoi le fichier devrait être supprimé
(The message is rather clear and it explains well why the file has to

25For all the self-reported scores given in this section, we used a 7-level Likert
scale.

26Showing fake (security) warnings within webpages to push users to download
and install malicious programs is a common practice, e.g, fake antivirus or flash players.

CCS ’18, October 15–19, 2018, Toronto, ON, Canada Mauro Cherubini et al.

be deleted), Ce message apparaît de manière assez claire dans la page,
donc cela permet à l’utilisateur d’être au courant sur ce qu’il télécharge.
(This message appears in a clear way on the page. This allows the user
to be aware of what she is downloading.) These results suggest that
the extension was rated slightly desirable by most participants. The
study helped identify several areas for improvement of the design,
namely around the behavior of the extension and the messages
displayed to encourage the users to delete the downloaded file in
case of mismatch (see Section 8).

Limitations. Like any lab study, the experiment suffered from
low ecological validity. Also, the prescriptiveness of the sequence
of tasks that we gave to participants reduced the ability to observe
participants’ spontaneous behavior when downloading files. Also,
we might have introduced a learning bias by choosing not to ran-
domize the presentation of the first and the second part of the study
might have .

8 DISCUSSION
Our large-scale user survey shows that the majority of computer
users are vulnerable to attacks through corrupted download files.
Checksum is one of the most prevalent solutions for countering
such attacks. However, most users have a hard time grasping the
idea behind integrity verification. Through the survey, we learned
that users neither understand nor use them (95% do not know how
to use them, 98% do not use them for verifying a file integrity).
Through the user experiment, we also consolidated this finding:
Even when users were explicitly asked to verify checksums, most
of them have had a hard time understanding what they were doing
and often failed at detecting strategic replacements (38% of the
time). Furthermore, after having spent over 30 minutes manually
verifying checksums, looking at our extension and answering ques-
tions related to checksums, 65% of the participants still had troubles
explaining what was the purpose of checksums. Therefore, we ar-
gue that raising awareness around manual checksums verification
would require substantial efforts.

In this paper, we argue that a viable solution to increase the se-
curity and usability of web downloads is to automate the checksum
verification process. Through the lab study, we tested an initial de-
sign for an extension that would automate the integrity verification.
In our initial design the user was left in charge of deciding whether
the downloaded file (for which there was a mismatch) had to be re-
moved from the system. Unfortunately, we learned that this design
was not really effective at making people aware of potential threats.
This finding resonates well with the suggestions of Tan et al. [44].
As highlighted by prior work, security warnings might be skipped
for a variety of reasons: notifications overload, habituation [42],
inattention blindness [47], etc.

We argue that designers should choose defaults to privilege users’
security over preserving user’s choice. In fact, a lack of action from
the user does not necessarily mean that she is willing to accept the
risk of proceeding but might simply be due to the aforementioned
effects. Concretely, in the case of a mismatch, instead of warning
the users and suggesting them to delete the corrupted files (opt-in
approach), the extension should block access to the downloaded
files a priori and ask for users’ action to unblock it. This opt-out

approach is similar to the one implemented by antivirus or spam
filters which put files or e-mails in quarantine.

9 CONCLUSION & FUTUREWORK
In this work, we opened a line of research on the use of checksums
for integrity verification of web downloads and made a number of
contributions.

Given the user feedback and results of our in situ experiments, we
plan to improve the user interface of our extension tomake it clearer
about the potential risks of installing corrupted download files.
More specifically, we will deploy an instrumented beta version of
our extension and run a longitudinal study to gather more feedback
from the end users and at a larger scale. To do so, we will rely on
the well-established experience sampling method that collects in
situ data by requesting participants to provide short self-reports at
multiple random occasions over time [13, 14]. This will also enable
us to collect data about checksums in the wild.

Finally, we believe it is paramount to robustify and improve the
software artifacts (browser and CMS extensions) we produced and
make them available to a wide audience. In addition we intend
to promote our proposals to (and collaborate with) the different
stakeholders involved, that is the W3C, web browsers (e.g., Google,
Mozilla) and CMS (e.g., WordPress, Drupal) development teams in
order to have a concrete impact on the security of Internet users.

ACKNOWLEDGMENTS
The authors express their sincere gratitude to Italo Dacosta, Andreas
Kramm, Nicolas Le Scouarnec, Adrienne Porter Felt, Lawrence You,
Blase Ur (our shepherd) and the anonymous reviewers for their
insightful feedback. The authors also warmly thank Holly Cogliati
for her great editing job on the manuscript. The work was partially
funded with a UNIL-HEC Lausanne Research Fund.

REFERENCES
[1] [n. d.]. Checksum On the Go - Chrome Webstore.

https://chrome.google.com/webstore/detail/checksum-on-the-
go/fholnooplijidhdagedffljaphholpea.

[2] [n. d.]. Files MD5 SHA1 Calculate & Compare – Add-Ons for Fire-
fox. https://addons.mozilla.org/en-US/firefox/addon/calculate-md5-sha1-hash-
che-1/?src=search.

[3] [n. d.]. Linux Mint Website Hacked; ISO Downloads Re-
placed with a Backdoor - Security News - Trend Micro USA.
https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-
threats/linux-mint-website-hacked-iso-downloads-replaced-with-a-backdoor.

[4] 2016. Certificates and Digitally Signed Applications: A Double Edged
Sword. https://eventtracker.com/tech-articles/certificates-and-digitally-signed-
applications-a-double-edged-sword/.

[5] 2016. Transmission Hijacked Again to Spread Malware.
https://blog.malwarebytes.com/threat-analysis/2016/09/transmission-hijacked-
again-to-spread-malware/.

[6] Ruba Abu-Salma, M. Angela Sasse, Joseph Bonneau, Anastasia Danilova, Alena
Naiakshina, and Matthew Smith. 2017. Obstacles to the Adoption of Secure
Communication Tools. In Proc. of the IEEE Symp. on Security and Privacy (S&P).
IEEE, 137–153. https://doi.org/10.1109/SP.2017.65

[7] Devdatta Akhawe and Adrienne Porter Felt. 2013. Alice in Warningland: A
Large-Scale Field Study of Browser Security Warning Effectiveness.. In Proc. of
the USENIX Security Symp. (USENIX Security), Vol. 13. USENIX.

[8] Bonnie Brinton Anderson, C. Brock Kirwan, Jeffrey L. Jenkins, David Eargle,
Seth Howard, and Anthony Vance. 2015. How Polymorphic Warnings Reduce
Habituation in the Brain: Insights from an fMRI Study. In Proc. of the ACM
Conf. on Human Factors in Computing Systems (CHI). ACM, 2883–2892. https:
//doi.org/10.1145/2702123.2702322

[9] Catherine L. Anderson and Ritu Agarwal. 2010. Practicing Safe Computing: A
Multimedia Empirical Examination of Home Computer User Security Behavioral

https://doi.org/10.1109/SP.2017.65
https://doi.org/10.1145/2702123.2702322
https://doi.org/10.1145/2702123.2702322

Automating the Integrity Verification of Web Downloads for the Masses CCS ’18, October 15–19, 2018, Toronto, ON, Canada

Intentions. MIS Q. 34, 3 (Sept. 2010), 613–643.
[10] Antonio Bianchi, Jacopo Corbetta, Luca Invernizzi, Yanick Fratantonio, Christo-

pher Kruegel, and Giovanni Vigna. 2015. What the App Is That? Deception and
Countermeasures in the Android User Interface. In Proc. of the IEEE Symp. on
Security and Privacy (S&P). IEEE, 931–948. https://doi.org/10.1109/SP.2015.62

[11] Cristian Bravo-Lillo, Saranga Komanduri, Lorrie Faith Cranor, Robert W. Reeder,
Manya Sleeper, Julie Downs, and Stuart Schechter. 2013. Your Attention Please:
Designing Security-Decision UIs to Make Genuine Risks Harder to Ignore. In
Proc. of the Symp. on Usable Privacy and Security (SOUPS). ACM, New York, NY,
USA, 6:1–6:12. https://doi.org/10.1145/2501604.2501610

[12] Justin Cappos, Justin Samuel, Scott Baker, and John H. Hartman. 2008. A Look in
the Mirror: Attacks on Package Managers. In Proc. of the ACM Conf. on Computer
and Communications Security (CCS). ACM, 565–574. https://doi.org/10.1145/
1455770.1455841

[13] Juan Pablo Carrascal, Christopher Riederer, Vijay Erramilli, Mauro Cherubini,
and Rodrigo de Oliveira. 2013. Your Browsing Behavior for a Big Mac: Economics
of Personal Information Online. In Proc. of the ACM Int’l Conf. on the World Wide
Web (WWW). ACM, 189–200. https://doi.org/10.1145/2488388.2488406

[14] Mauro Cherubini and Nuria Oliver. 2009. A Refined Experience Sampling
Method to Capture Mobile User Experience. arXiv:0906.4125 [cs] (June 2009).
arXiv:cs/0906.4125

[15] Information Technology Laboratory Computer Security Division.
[n. d.]. NIST Policy on Hash Functions - Hash Functions | CSRC.
https://csrc.nist.gov/projects/hash-functions/nist-policy-on-hash-functions.

[16] Serge Egelman, Lorrie Faith Cranor, and Jason Hong. 2008. You’ve Been Warned:
An Empirical Study of the Effectiveness of Web Browser Phishing Warnings.
In Proc. of the ACM Conf. on Human Factors in Computing Systems (CHI). ACM,
1065–1074. https://doi.org/10.1145/1357054.1357219

[17] Serge Egelman, Marian Harbach, and Eyal Peer. 2016. Behavior Ever Follows
Intention?: A Validation of the Security Behavior Intentions Scale (SeBIS). In
Proc. of the ACM Conf. on Human Factors in Computing Systems (CHI). ACM,
5257–5261. https://doi.org/10.1145/2858036.2858265

[18] Serge Egelman and Stuart Schechter. 2013. The Importance of Being Earnest [in
Security Warnings]. In Proc. of the Int’l Conf. on Financial Cryptography and Data
Security (FC). Springer, 52–59. https://doi.org/10.1007/978-3-642-39884-1_5

[19] Elham Vaziripour, Justin Wu, Mark O’Neill, Ray Clinton, JordanWhitehead, Scott
Heidbrink, Kent Seamons, and Daniel Zappala. 2017. Is That You, Alice? A Us-
ability Study of the Authentication Ceremony of Secure Messaging Applications.
In Proc. of the Symp. on Usable Privacy and Security (SOUPS). ACM.

[20] Michael Fagan and Mohammad Maifi Hasan Khan. 2016. Why Do They Do What
They Do?: A Study of What Motivates Users to (Not) Follow Computer Security
Advice. In Proc. of the Symp. on Usable Privacy and Security (SOUPS). ACM, 59–75.

[21] Adrienne Porter Felt, Alex Ainslie, Robert W. Reeder, Sunny Consolvo, Somas
Thyagaraja, Alan Bettes, Helen Harris, and Jeff Grimes. 2015. Improving SSL
Warnings: Comprehension and Adherence. In Proc. of the ACM Conf. on Human
Factors in Computing Systems (CHI). ACM, 2893–2902. https://doi.org/10.1145/
2702123.2702442

[22] R. Fielding and J. Reschke. 2014. Hypertext Transfer Protocol (HTTP/1.1): Semantics
and Content. RFC 7231. RFC Editor. http://www.rfc-editor.org/rfc/rfc7231.txt.

[23] Thom File and Camille Ryan. 2013. Computer and Internet Use in the United States.
Technical Report ACS-28. U.S. Census Bureau.

[24] S. M. Furnell, P. Bryant, and A. D. Phippen. 2007. Assessing the Security Percep-
tions of Personal Internet Users. Computers & Security 26, 5 (Aug. 2007), 410–417.
https://doi.org/10.1016/j.cose.2007.03.001

[25] Joseph H. Goldberg, Mark J. Stimson, Marion Lewenstein, Neil Scott, and Anna M.
Wichansky. 2002. Eye Tracking in Web Search Tasks: Design Implications. In
Proc. of the Symp. on Eye Tracking Research & Applications (ETRA). ACM, 51.
https://doi.org/10.1145/507072.507082

[26] Hsu-Chun Hsiao, Yue-Hsun Lin, Ahren Studer, Cassandra Studer, King-Hang
Wang, Hiroaki Kikuchi, Adrian Perrig, Hung-Min Sun, and Bo-Yin Yang. 2009.
A Study of User-Friendly Hash Comparison Schemes. In Proc. of the Computer
Security Applications Conf. (ACSAC). IEEE, 105–114. https://doi.org/10.1109/
ACSAC.2009.20

[27] Jeffrey L. Jenkins, Bonnie Brinton Anderson, Anthony Vance, C. Brock Kirwan,
and David Eargle. 2016. More Harm than Good? How Messages That Interrupt
Can Make Us Vulnerable. Information Systems Research 27, 4 (2016), 880–896.

[28] Marcel Adam Just and Patricia A Carpenter. 1976. Eye Fixations and Cognitive
Processes. Cognitive Psychology 8, 4 (Oct. 1976), 441–480. https://doi.org/10.
1016/0010-0285(76)90015-3

[29] Swati Khandelwal. 2018. Flaw in Popular Transmission
BitTorrent Client Lets Hackers Control Your PC Remotely.
https://thehackernews.com/2018/01/bittorent-transmission-hacking.html.

[30] David Modic and Ross Anderson. 2014. Reading This May Harm Your Computer:
The Psychology of Malware Warnings. Computers in Human Behavior 41 (2014),
71–79.

[31] J. Mogul and A. Van Hoff. 2002. Instance Digests in HTTP. RFC 3230. RFC Editor.
[32] Alex Poole and Linden J Ball. 2006. Eye Tracking in Human-Computer Interaction

and Usability Research: Current Status and Future Prospects. In Encyclopedia of
Human Computer Interaction. 13.

[33] Bart Preneel. 1994. Cryptographic Hash Functions. Transactions on Emerging
Telecommunications Technologies 5, 4 (1994), 431–448.

[34] Elissa M. Redmiles, Sean Kross, and Michelle L. Mazurek. 2016. How I Learned
to Be Secure: A Census-Representative Survey of Security Advice Sources and
Behavior. In Proc. of the ACM Conf. on Computer and Communications Security
(CCS). ACM, Vienna, Austria, 666–677. https://doi.org/10.1145/2976749.2978307

[35] Elissa M. Redmiles, Sean Kross, and Michelle L. Mazurek. 2017. Where Is the
Digital Divide?: A Survey of Security, Privacy, and Socioeconomics. In Proc. of
the ACM Conf. on Human Factors in Computing Systems (CHI). ACM, 931–936.
https://doi.org/10.1145/3025453.3025673

[36] Robert W. Reeder, Adrienne Porter Felt, Sunny Consolvo, Nathan Malkin, Christo-
pher Thompson, and Serge Egelman. 2018. An Experience Sampling Study of
User Reactions to Browser Warnings in the Field. In Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems (CHI ’18). ACM, New York,
NY, USA, 512:1–512:13. https://doi.org/10.1145/3173574.3174086

[37] Vaidya Rishi. 2018. Cyber Security Breaches Survey 2018. Survey. United Kingdom.
[38] Phillip Rogaway and Thomas Shrimpton. 2004. Cryptographic Hash-Function Ba-

sics: Definitions, Implications, and Separations for Preimage Resistance, Second-
Preimage Resistance, and Collision Resistance. In Proc. of Int’l Workshop on Fast
Software Encryption (FSE) (Lecture Notes in Computer Science). Springer, 371–388.
https://doi.org/10.1007/978-3-540-25937-4_24

[39] Sergej Dechand, Dominik Schürmann, Karoline Busse, Yasemin Acar, Sascha Fahl,
and Matthew Smith. 2016. An Empirical Study of Textual Key-Fingerprint Repre-
sentations. In Proc. of the USENIX Security Symp. (USENIX Security). USENIX.

[40] Mario Silic and Andrea Back. 2017. Deterrent Effects of Warnings on User’s
Behavior in Preventing Malicious Software Use. Proceedings of the 50th Hawaii
International Conference on System Sciences (2017).

[41] Mario Silic, Jordan Barlow, andDustin Ormond. 2015. Warning! AComprehensive
Model of the Effects of Digital Information Security Warning Messages. In Proc.
of the IFIP Workshop on Information Systems Security Research. IFIP.

[42] Joshua Sunshine, Serge Egelman, Hazim Almuhimedi, Neha Atri, and Lorrie Faith
Cranor. 2009. Crying Wolf: An Empirical Study of SSL Warning Effectiveness..
In Proc. of the USENIX Security Symp. (USENIX Security). USENIX, 399–416.

[43] Leona Tam, Myron Glassman, and Mark Vandenwauver. 2010. The Psychology of
PasswordManagement: A Tradeoff between Security andConvenience. Behaviour
& Information Technology 29, 3 (2010), 233–244.

[44] Joshua Tan, Lujo Bauer, Joseph Bonneau, Lorrie Faith Cranor, Jeremy Thomas,
and Blase Ur. 2017. Can Unicorns Help Users Compare Crypto Key Fingerprints?.
In Proc. of the ACM Conf. on Human Factors in Computing Systems (CHI). ACM,
3787–3798. https://doi.org/10.1145/3025453.3025733

[45] Karen Turner. 2016-07-15T05:07-500. Developers Consider Apple’s App Store Re-
strictive and Anticompetitive, Report Shows. Washington Post (2016-07-15T05:07-
500).

[46] N. Unger, S. Dechand, J. Bonneau, S. Fahl, H. Perl, I. Goldberg, and M. Smith.
2015. SoK: Secure Messaging. In Proc. of the IEEE Symp. on Security and Privacy
(S&P). IEEE, 232–249. https://doi.org/10.1109/SP.2015.22

[47] D. Alexander Varakin, Daniel T. Levin, and Roger Fidler. 2008. Unseen and
Unaware: Implications of Recent Research on Failures of Visual Awareness for
Human-Computer Interface Design. Hum.-Comput. Interact. 19, 4 (Dec. 2008),
389–422. https://doi.org/10.1207/s15327051hci1904_9

[48] Nevena Vratonjic, Julien Freudiger, Vincent Bindschaedler, and Jean-Pierre
Hubaux. 2013. The Inconvenient Truth About Web Certificates. In Proc. of
the Workshop on Economics of Information Security and Privacy (WEIS). Springer,
79–117. https://doi.org/10.1007/978-1-4614-1981-5_5

[49] W3C. 2016. Subresource Integrity. https://www.w3.org/TR/SRI/.
[50] Christina Warren. [n. d.]. Popular BitTorrent Client Transmission Gets Infected

With Malware Again. https://gizmodo.com/mac-bittorrent-client-transmission-
gets-infected-with-m-1785957214.

[51] Catherine S. Weir, Gary Douglas, Martin Carruthers, and Mervyn Jack. 2009. User
Perceptions of Security, Convenience and Usability for Ebanking Authentication
Tokens. Computers & Security 28, 1-2 (2009), 47–62.

https://doi.org/10.1109/SP.2015.62
https://doi.org/10.1145/2501604.2501610
https://doi.org/10.1145/1455770.1455841
https://doi.org/10.1145/1455770.1455841
https://doi.org/10.1145/2488388.2488406
http://arxiv.org/abs/cs/0906.4125
https://doi.org/10.1145/1357054.1357219
https://doi.org/10.1145/2858036.2858265
https://doi.org/10.1007/978-3-642-39884-1_5
https://doi.org/10.1145/2702123.2702442
https://doi.org/10.1145/2702123.2702442
https://doi.org/10.1016/j.cose.2007.03.001
https://doi.org/10.1145/507072.507082
https://doi.org/10.1109/ACSAC.2009.20
https://doi.org/10.1109/ACSAC.2009.20
https://doi.org/10.1016/0010-0285(76)90015-3
https://doi.org/10.1016/0010-0285(76)90015-3
https://doi.org/10.1145/2976749.2978307
https://doi.org/10.1145/3025453.3025673
https://doi.org/10.1145/3173574.3174086
https://doi.org/10.1007/978-3-540-25937-4_24
https://doi.org/10.1145/3025453.3025733
https://doi.org/10.1109/SP.2015.22
https://doi.org/10.1207/s15327051hci1904_9
https://doi.org/10.1007/978-1-4614-1981-5_5

CCS ’18, October 15–19, 2018, Toronto, ON, Canada Mauro Cherubini et al.

A TRANSCRIPT OF THE USER SURVEY
(A1) What type of laptop or desktop do you usually use, if any?

⃝ I use a computer running macOS
⃝ I use a computer running Windows
⃝ I use a computer running Linux
⃝ I do not use a computer

(A2) Do you have an antivirus installed on your computer?
⃝ Yes
⃝ Not sure
⃝ No

(A3) Software developers and vendors/resellers regularly provide updates and bug
fixes. Approximately how often do you update the following technologies?

Antivirus Operating system
(e.g., Window)

Applications
(e.g., Word)

Never ⃝ ⃝ ⃝

Once a year ⃝ ⃝ ⃝

A few times a year ⃝ ⃝ ⃝

Once a month ⃝ ⃝ ⃝

Twice a month ⃝ ⃝ ⃝

Once a week ⃝ ⃝ ⃝

Multiple times a week ⃝ ⃝ ⃝

Every day ⃝ ⃝ ⃝

Happens automatically ⃝ ⃝ ⃝

Not sure ⃝ ⃝ ⃝

(A4) Approximately, how often do you perform the following actions on your
computer? Download programs from:

Peer-to-peer
networks

Developer’s
websites

App stores Vendor’s
websites

Never ⃝ ⃝ ⃝ ⃝

Once a year ⃝ ⃝ ⃝ ⃝

A few times a year ⃝ ⃝ ⃝ ⃝

Once a month ⃝ ⃝ ⃝ ⃝

Twice a month ⃝ ⃝ ⃝ ⃝

Once a week ⃝ ⃝ ⃝ ⃝

Multiple times a week ⃝ ⃝ ⃝ ⃝

Every day ⃝ ⃝ ⃝ ⃝

Not sure ⃝ ⃝ ⃝ ⃝

(A5) What is the most typical thing you do after you have downloaded a program
that did not come from the official app store on your computer?
⃝ Check it with my antivirus software
⃝ Open it
⃝ Check its legitimacy (please explain how)
⃝ Organize the file on my computer
⃝ Move it to an external storage
⃝ Ask a knowledgeable peer/family member for help
⃝ Not sure
⃝ Other (please explain)

(A6) Have you ever seen a warning message similar to that of the image below?27

⃝ Yes
⃝ Not sure
⃝ No

(A7) What would you do if youwere presentedwith such amessage when running
a program that did not come from the official app store on your computer?
⃝ Stop opening the program and delete it from my system
⃝ Continue opening the program
⃝ Check the program with my antivirus software then continue
⃝ Double check whether I am on the right website and if so, continue

running
⃝ Restart my computer then delete the program
⃝ Re-download the program
⃝ Ask a knowledgeable peer/family member for help
⃝ Not sure
⃝ Other (please explain)

(A8) How often did you experience the following situa-
tions in the last year? Your computer was infected by

A virus A spyware An adware
Never ⃝ ⃝ ⃝

Once ⃝ ⃝ ⃝

A few times ⃝ ⃝ ⃝

Once a month ⃝ ⃝ ⃝

Twice a month ⃝ ⃝ ⃝

Once a week ⃝ ⃝ ⃝

Multiple times a week ⃝ ⃝ ⃝

Every day ⃝ ⃝ ⃝

Not sure ⃝ ⃝ ⃝

(A9) Have you ever noticed these sequences of numbers and characters, named
“checksums” or “hashes” or “digests”, on popular websites?28 (see highlights
on the examples below)

⃝ Yes
⃝ Not sure / I do not remember
⃝ No

(A10) What would you do with those sequences of numbers and characters, if you
were to find them on the website of a program youwould like to download?29
⃝ Use them to ensure the integrity of the program
⃝ Stop downloading the app and search for something else
⃝ Nothing, I will continue downloading the app
⃝ Ask a knowledgeable peer/family member for help
⃝ Google the app to find more information
⃝ Run an antivirus check
⃝ Not sure
⃝ Other (please explain)

(A11) Do you keep sensitive information on your computer?
□ Personal
□ Financial (e.g., credit card number, bank statements)
□ Medical (e.g., exams results)
□ Passwords
□ Photos
□ None of the above
□ Other

27 28 29

27The warning message was customized depending on the answer provided by the
respondent to question A1.

28The actual survey presented three distinct examples of popular websites to re-
spondents. Respondents were askedwhether they recalled seeing any similar “sequence
of numbers and characters” in the past months from websites they visited.

29The same screenshots of question A9 were also displayed for question A10.
Here respondents were presented a concrete scenario of downloading an app from a
website with checksum and asked what they would do with the “sequence of letters
and numbers”.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Download Behavior
	2.2 Effectiveness of Security Warnings
	2.3 File Integrity Verification
	2.4 Automating Integrity Verification

	3 System and Threat Model
	3.1 System and Threat Model
	3.2 Checksums and Digital Signatures
	3.3 Subresource Integrity

	4 Survey of Websites
	4.1 Methodology
	4.2 Results and Analysis

	5 Large-scale User Survey
	5.1 Methodology
	5.2 Demographics and General Statistics
	5.3 Results and Analysis
	5.4 Summary
	5.5 Limitations

	6 Automating Checksum Verification
	6.1 Extending Subresource Integrity to Links
	6.2 Checksum Verification: Browser Extension
	6.3 Checksum Generation: CMS Extension

	7 User Experiment
	7.1 Participants
	7.2 Apparatus
	7.3 Procedure
	7.4 Results

	8 Discussion
	9 Conclusion & Future Work
	Acknowledgments
	References
	A Transcript of the User Survey

