
Scaling and Load Testing Location-based Publish and Subscribe

Bertil Chapuis, Benoı̂t Garbinato
{firstname.lastname}@unil.ch

Distributed Object Programming Laboratory
University of Lausanne, Switzerland

Abstract—The rise of the Internet of things (IoT) poses massive
scalability issues for location-based services. More particularly,
location-aware publish and subscribe services are struggling
to scale out the computation of matches between publications
and subscriptions that continuously update their location. In
this demonstration paper, we propose a novel distributed and
horizontally scalable architecture for location-aware publish
and subscribe. Our middleware architecture relies on a multi-
step routing mechanism based on consistent hashing and range
partitioning. To demonstrate its scalability, we present a traffic
data generator, which, in contrast to existing generators, can be
used to perform real-time load tests. Finally, we show that our
architecture can be deployed on a small 10-node cluster and
can process up to 80,000 location updates per second producing
25,000 matches per seconds.

1. Introduction

Today, connected mobility is no longer reserved to
valuable living beings. More and more moving objects are
connected to the Internet and, with initiatives such as the
LoRa Alliance1, even insignificant objects may soon become
talkative. As highlighted by Gartner2 and IDC3, this trend is
not likely to stop, and there may be between 25 to 30 billion
connected objects by 2020.

In this context, when it comes to developing context-
aware applications that want to take advantage of the In-
ternet of things (IoT) ecosystem, the location-based publish
and subscribe paradigm is of particular interest. With this
communication paradigm, connected objects can issue pub-
lications and subscriptions that are geographically scoped
and that move with them. A match occurs between a given
publication and a given subscription if a context criterion
and a content criterion are both met simultaneously. On one
hand, a proximity condition between a publication and a
subscription can be expressed by a context criterion. On the
other hand, a semantical relationship between a publication
and a subscription can be embodied by a content criterion.

Although the location-based publish and subscribe
paradigm offers a lot of flexibility and expressiveness, its

1. https://www.lora-alliance.org
2. http://www.gartner.com/newsroom/id/3165317
3. https://www.idc.com/getdoc.jsp?containerId=US40755816

implementation poses difficulties in terms of horizontal
scalability. As of today, the systems described in the lit-
erature have addressed this scalability issue by proposing
vertically scalable solutions (i.e., with one computing unit
being responsible for the full workload) [1], [2], [3],
[4], [5], [6]. Obviously, the exponential growth of the IoT
ecosystem can easily exceed the load that is sustainable for
a vertically scalable computing unit. In this demonstration,
we showcase a horizontally scalable middleware architecture
for the location-based publish and subscribe communication
paradigm, which can be deployed on clusters made of com-
modity hardware. In addition, we present near real-time load
testing tools that can be used to load test and benchmark
such architecture by mocking traffic data in real time.

2. Middleware Architecture

In this section, we describe a horizontally scalable dis-
tributed middleware architecture supporting the location-
based publish and subscribe communication paradigm. This
architecture addresses the problem of distributing the com-
putation of matches among cluster nodes in a way that
allows the overall system to scale out or scale horizontally.
In contrast to centralized spatial data structures, which aim
at taking advantage of geographical proximity, our solution
uses consistent hashing in conjunction with range partition-
ing expressed with the notion of tiles in order to distribute
the computation of matches across a cluster.

2.1. Grid and tiles

The notion of grid layout, that divides the world into sets
of tiles, is typically used by map services such as Google
Maps4 or Mapbox5 to serve static data. As illustrated in
Figure 1, we use a similar approach to distribute the com-
putation of matches between publications and subscriptions
among the nodes of a cluster. However, our use case is more
complex since publications and subscriptions continuously
move from tile to tile and matches must be emitted in real
time in reaction to these updates.

4. https://maps.google.com
5. https://www.mapbox.com

https://www.lora-alliance.org
http://www.gartner.com/newsroom/id/3165317
https://www.idc.com/getdoc.jsp?containerId=US40755816
https://maps.google.com
https://www.mapbox.com


t1 t2 t3

t4 t5 t6
pub1

sub1

pub2

Figure 1: Publications, Subscriptions, and Tiles

2.2. Consistent Hashing

In general, in order to scale horizontally, distributed hash
tables partition data items across a cluster of nodes with
a family of hash functions called consistent hashing [7],
[8]. It is common to think about the range of hash values
produced by consistent hashing as a ring. In such a ring,
the largest possible hash value convolutes to the smallest
possible hash value [9]. Each node of the cluster is placed
on the ring at a fixed position which can be obtained by
hashing the unique identifier of that node. To locate the node
responsible for storing a given data item, the identifier of that
item is first hashed and then the first node with a placement
value greater than the resulting hash value is selected.

2.3. Message Routing

Our architecture relies on range partitions obtained by
tiling of the earth’s surface and on a set of consistent
hashing functions to partition and distribute the load of
computing matches between publications and subscriptions.
In other words, consistent hashing functions are responsible
for evenly distributing the load on cluster nodes, whereas
the subdivision of the earth’s surface into tiles is used as
a partitioning criteria. Figure 2 shows how these notions of
tiling and consistent hashing are assembled together to form
our middleware architecture.

Publication Routing. The routing of publications from a
moving entity to a tile is illustrated in Figure 2a:

1) When adding a publication to the middleware or up-
dating its location, the moving entity first contacts a
frontend service. The frontend service typically runs on
every node of the cluster and is placed behind a load
balancer, so the moving entity does not know which
service is contacted.

2) The frontend service then routes the request to a publi-
cation manager service using consistent hashing on the
identifier of the publication. This intermediary step is
required to manage the changing state of a publication
transparently.

3) Finally, publications are routed to a tile manager service
using consistent hashing on tile identifiers. Since a
publication state changes and can move from tile to

tile, some messages are generated to add publications to
tiles, while others are generated to remove publications
from tiles.

Subscription Routing. As illustrated in Figure 2b, the
routing of subscriptions is symmetrical to the routing of
publications and achieves the same purpose:

4) The addition or update of a subscription first goes
through a frontend service.

5) It is then routed to the subscription manager node
responsible for it, using consistent hashing on the sub-
scription identifier.

6) Finally, the subscription is routed to the correct tile
manager service using consistent hashing on tile iden-
tifiers. As a subscription moves, the subscription man-
ager is responsible for generating the correct tile reg-
istration and deregistration messages.

Publication Routing. The tile manager service is responsi-
ble for triggering matches when a publication and subscrip-
tion overlap in a tile. Figure 2c illustrates the routing of a
matching publication back to the subscription:

7) Matches between publications and subscriptions are
first routed to a match filter service using consistent
hashing on the subscription identifier.

8) The match filter may look superfluous but is required
since the same match may be computed on several
tiles on different nodes. Thus, a filtering mechanism
is required and the match filter service is responsible
for eliminating duplicates and transmitting matches to
subscribers.

3. Traffic Data and Load Testing
Spatio-temporal and traffic data generators are regularly

used to benchmark moving object databases. In this section,
we highlight some prior batch data generators and show the
need for a new kind of generator that produces data in real
time with the intent to load test location-based services.

3.1. Batch Generation

The Brinkoff data generator [10] uses a real road net-
work as well as a perturbation model to generate mobility
traces. The BerlinMod Traffic Generator [11] relies on the
Berlin road network and on the Secondo DBMS to gener-
ate data. The Minnesota Traffic Generator [12] provides a
web interface to the Brinkoff and BerlinMod traffic data
generators. Finally, the Hermoupolis generator [13] uses
meaningful semantic data, such as homes and workplaces,
to make the generated data more realistic and similar to
real human mobility traces. These data generators were
devised for use cases characterized by batch processing
requirements. They first generate a large dataset, which
is then used to benchmark a moving object database. In
contrast, our use case requires large volumes of real-time
mobility data to load test the scalability of our middleware.
Consequently, we devised a real-time data generator that
mocks the behavior of a large fleet of moving entities.



Publisher

Publication
Manager

Tile
Manager

Tile
Manager

Frontend

① ②

③

③

(a) Publication routing

Subscriber

Sub
Manager

Frontend

Tile
Manager

Tile
Manager

④

⑤

⑥

⑥

(b) Subscription routing

Subscriber

Tile
Manager

Tile
Manager

Match Filter

⑦

⑦

⑧

(c) Match routing

Figure 2: Distributed routing based on consistent hashing

3.2. Real-time Generation

Our real-time data generator produces synthetic mobility
traces, which are distinct from each other and stick to an
existing road network. To do so, the underlying generation
model assumes that each moving entity performs a round
trip that passes by several locations randomly picked in a
given range on a map. These round trips are iterative in the
sense that, when the round trip of a moving entity ends,
the same round trip is started again. To infer the location
a moving entity at any given time during a round trip, we
rely on an open-source routing library called GraphHopper6.
GraphHopper uses a variant of the Dijkstra algorithm in
conjunction with a road network extracted from the Open-
StreetMap7 dataset to calculate routes and durations between
locations. In our case, we use the duration of a route to infer
the average speed of a moving entity between two locations
of a round trip. In addition, the segments composing the
route are used to derive the position of the moving entity
at any given time. Finally, since the accuracy of GPS track-
ers varies and mobility traces never match perfectly to an
existing road network, we add some Gaussian noise to the
generated traces.

3.3. Load Testing

To load test our middleware, we must be able to simulate
many concurrent moving entities. The Scala8 programming
language and the actor model implemented in the Akka9 suit
this requirement perfectly. In terms of implementation, each
moving entity corresponds to an actor whose state contains
a roundtrip and a position. The generator can be configured
with several parameters, such as the number of moving
entities, the road network used to produce the data, or the
average rate at which moving entities are reporting their
locations. Locations are reported by sending publication
updates and subscription updates directly to the middleware

6. https://graphhopper.com/
7. https://www.openstreetmap.org
8. http://www.scala-lang.org
9. http://akka.io

using a protocol we built using GRPC10. In future releases,
we might include additional drivers that could be used to
test other systems characterized by the same requirements.

4. Demonstration

In this section, we highlight some key characteristics
of the interactions proposed to the participants of this
demonstration. Through these interactions, our main goal
is to show the scalability of the middleware architecture we
described earlier.

4.1. Cluster Configuration

The participant interacts with a small cluster made of
10 virtual machines responsible for computing matches be-
tween publications and subscriptions. In this cluster, each
virtual machine is located on a different host and equipped
with two vCPU and 4 GB of RAM. The middleware is
deployed using Kubernetes11 and Docker12. Different traffic
data generation scenarios are launched with the same tools
in the same cluster to demonstrate the scalability of the
middleware. For example, with this cluster configuration,
our middleware can process up to 80,000 location updates
per second for 100,000 moving publications and 100,000
moving subscriptions, producing up to 25,000 matches per
second. Interestingly, despite the number of network hops
introduced by the architecture, the average end-to-end la-
tency remains below 50 milliseconds.

4.2. Cluster Monitoring

As illustrated in Figure 3, the middleware is monitored
with StatsD13, Graphite14, and Graphana15. The participant
interacts with a live dashboard and can obtain real-time

10. http://www.grpc.io
11. https://kubernetes.io
12. https://www.docker.com
13. https://github.com/etsy/statsd
14. https://graphiteapp.org
15. http://grafana.org

https://graphhopper.com/
https://www.openstreetmap.org
http://www.scala-lang.org
http://akka.io
http://www.grpc.io
https://kubernetes.io
https://www.docker.com
https://github.com/etsy/statsd
https://graphiteapp.org
http://grafana.org


Figure 3: Cluster Monitoring

Figure 4: Moving Subscription and Synthetic Publications

insight on the status of the middleware. The displayed
metrics include the throughput at which publications and
subscriptions are updating their locations, the throughput in
terms of matches between publications and subscription and
the status of each individual node participating in the com-
putation of matches in terms of load average and memory
usage.

4.3. End-User Interactions

As illustrated in Figure 4, a participant can interact with
the system with a web browser. Here, the large gray circle
corresponds to a subscription that moves as the user navi-
gates the map. The small red circles correspond to the set of
moving publications located in the range of the subscription.
The publication updates that match the subscription are
transmitted to the browser in real time due to the websocket
protocol. In this demonstration, the publications update their
location every second so the map is animated.

5. Conclusion & Future Work

The middleware for location-based publish and subscribe
presented in this demonstration paper achieves horizontal
scalability due to a multi-step routing mechanism that relies
on consistent hashing and range partitioning. The new traffic
data generator we propose can be used to generate large
amounts of real-time data to perform load and scalability
tests on location-based services. As of today, it is not clear
how such a middleware can recover from failure or scale
in and out on demand. Consequently, our future work will
focus on investigating these issues.

References
[1] X. Chen, Y. Chen, and F. Rao, “An efficient spatial publish/subscribe

system for intelligent location-based services,” in Proceedings of
the 2nd international workshop on Distributed event-based systems.
ACM, 2003, pp. 1–6.

[2] G. Cugola and J. E. M. de Cote, “On introducing location awareness
in publish-subscribe middleware,” in 25th IEEE International Con-
ference on Distributed Computing Systems Workshops. IEEE, 2005,
pp. 377–382.

[3] P. T. Eugster, B. Garbinato, and A. Holzer, “Location-based pub-
lish/subscribe,” in Fourth IEEE International Symposium on Network
Computing and Applications. IEEE, 2005, pp. 279–282.

[4] A. Holzer, P. Eugster, and B. Garbinato, “Alps–adaptive location-
based publish/subscribe,” Computer Networks, vol. 56, no. 12, pp.
2949–2962, 2012.

[5] G. Li, Y. Wang, T. Wang, and J. Feng, “Location-aware pub-
lish/subscribe,” in Proceedings of the 19th ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining. ACM,
2013, pp. 802–810.

[6] X. Wang, Y. Zhang, W. Zhang, X. Lin, and W. Wang, “Ap-
tree: efficiently support location-aware publish/subscribe,” The VLDB
Journal—The International Journal on Very Large Data Bases,
vol. 24, no. 6, pp. 823–848, 2015.

[7] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and
D. Lewin, “Consistent hashing and random trees: Distributed caching
protocols for relieving hot spots on the world wide web,” in Pro-
ceedings of the twenty-ninth annual ACM symposium on Theory of
computing. ACM, 1997, pp. 654–663.

[8] D. Karger, A. Sherman, A. Berkheimer, B. Bogstad, R. Dhanidina,
K. Iwamoto, B. Kim, L. Matkins, and Y. Yerushalmi, “Web caching
with consistent hashing,” Computer Networks, vol. 31, no. 11, pp.
1203–1213, 1999.

[9] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
amazon’s highly available key-value store,” ACM SIGOPS Operating
Systems Review, vol. 41, no. 6, pp. 205–220, 2007.

[10] T. Brinkhoff, “Generating network-based moving objects,” in Scien-
tific and Statistical Database Management, 2000. Proceedings. 12th
International Conference on. IEEE, 2000, pp. 253–255.

[11] C. Düntgen, T. Behr, and R. H. Güting, “Berlinmod: a benchmark
for moving object databases,” The VLDB Journal—The International
Journal on Very Large Data Bases, vol. 18, no. 6, pp. 1335–1368,
2009.

[12] M. F. Mokbel, L. Alarabi, J. Bao, A. Eldawy, A. Magdy, M. Sarwat,
E. Waytas, and S. Yackel, “Mntg: an extensible web-based traffic
generator,” in International Symposium on Spatial and Temporal
Databases. Springer, 2013, pp. 38–55.

[13] N. Pelekis, S. Sideridis, P. Tampakis, and Y. Theodoridis, “Her-
moupolis: a semantic trajectory generator in the data science era,”
SIGSPATIAL Special, vol. 7, no. 1, pp. 19–26, 2015.


