
	
	

	
	
	

FACULTÉ DES HAUTES ÉTUDES COMMERCIALES

DÉPARTEMENT DE SYSTÈMES D’INFORMATION

THREE TEMPORAL PERSPECTIVES ON
DECENTRALIZED LOCATION-AWARE COMPUTING:

PAST, PRESENT, FUTURE

THÈSE DE DOCTORAT

présentée à la

Faculté des Hautes Études Commerciales
de l'Université de Lausanne

pour l’obtention du grade de
Docteur ès Sciences en systèmes d’information

par

Bertil CHAPUIS

Directeur de thèse
Prof. Benoît Garbinato

Jury

Prof. Olivier Cadot, Président
Prof. Yves Pigneur, expert interne

Prof. Philippe Cudré-Mauroux, expert externe
Prof. Patrick Thomas Eugster, expert externe

LAUSANNE

2018

Members of the thesis committee

Prof. Benoît Garbinato

Université de Lausanne

Thesis supervisor

Prof. Yves Pigneur

Université de Lausanne

Internal member of the thesis committee

Prof. Philippe Cudré-Mauroux

Université de Fribourg

External member of the thesis committee

Prof. Patrick Thomas Eugster

Université de la Suisse italienne

External member of the thesis committee

	

	

	

	

	

Remerciements

Je tiens tout d’abord à remercier mon épouse, Jessica, pour son amour, son amitié et

son soutien durant les douze dernières années. Fonder une famille et accueillir nos deux

enfants, Margaux et Robin, restera toujours le plus beau de nos projets.

Je remercie tout particulièrement Monsieur Benoı̂t Garbinato, Professeur à l’Université

de Lausanne, de m’avoir accordé sa confiance durant les cinq dernières années. Sous

sa direction, j’ai mieux compris ce qui faisait l’originalité d’une question de recherche

et, grâce à ses qualités humaines, j’ai apprécié sereinement l’incertitude inhérente à

l’innovation.

Je tiens à remercier Monsieur Thibault Estier, Maı̂tre d’enseignement et de recherche

à l’Université de Lausanne, et Madame Christine Legner, Professeure à l’Université de

Lausanne, pour la confiance témoignée lors de mon engagement en tant qu’assistant

de recherche et d’enseignement au sein de l’Institut des Systèmes d’Information de

l’Université de Lausanne.

J’exprime également ma gratitude à Monsieur Gabor Maksay, Enseignant à la Haute

Ecole d’Ingénierie et de Gestion du Canton de Vaud, et Monsieur Yves Pigneur, Pro-

fesseur à l’Université de Lausanne, pour leur passion de l’enseignement et leur intérêt

sincère pour les étudiants. Sans leur soutien et leurs démarches, je n’aurais probable-

ment jamais rejoint le Master en Système d’Information de l’Université de Lausanne.

Je tiens enfin à remercier les membres externes de mon jury de thèse, Monsieur Philippe

Cudré-Mauroux, Professeur à l’Université de Fribourg, et Monsieur Patrick Thomas

Eugster, Professeur à l’Université de la Suisse italienne, ainsi que tous les chercheurs

anonymes qui ont relu mes travaux. Leurs commentaires et leurs corrections m’ont

permis de progresser et de grandement améliorer la qualité de mes travaux.

Je remercie finalement tous ceux avec qui j’ai eu l’occasion de collaborer durant ces

années dont: Arielle Moro, Vaibhav Kulkarni, Kévin Huguenin, Periklis Andritsos, Lu-

cas Mourot, Holly Cogliati-Bauereis, Vincent Bozzo, Rafal Kowalski, Boris Fritscher,

Alexandre Métrailler, Jean-Sébastien Monzani, Nico Hillah, Mauro Cherubini, Math-

ias Humbert, Igor Bilogrevic et Alexandre Meylan. Pour ceux que j’aurais oubliés,

faites-moi signe, je vous dois un café.

Résumé

Durant les quatre dernières décennies, la miniaturisation a permis la diffusion à large

échelle des ordinateurs, les rendant omniprésents. Aujourd’hui, le nombre d’objets

connectés à Internet ne cesse de croı̂tre et cette tendance n’a pas l’air de ralentir. Ces

objets, qui peuvent être des téléphones mobiles, des véhicules ou des senseurs, génèrent

de très grands volumes de données qui sont presque toujours associés à un contexte spa-

tiotemporel. Le volume de ces données est souvent si grand que leur traitement requiert

la création de système distribués qui impliquent la coopération de plusieurs ordinateurs.

La capacité de traiter ces données revêt une importance sociétale. Par exemple: les

données collectées lors de trajets en voiture permettent aujourd’hui d’éviter les em-

bouteillages ou de partager son véhicule. Un autre exemple: dans un avenir proche,

les données collectées à l’aide de gyroscopes capables de détecter les trous dans la

chaussée permettront de mieux planifier les interventions de maintenance à effectuer sur

le réseau routier. Les domaines d’applications sont par conséquent nombreux, de même

que les problèmes qui y sont associés. Les articles qui composent cette thèse traitent

de systèmes qui partagent deux caractéristiques clés: un contexte spatiotemporel et une

architecture décentralisée. De plus, les systèmes décrits dans ces articles s’articulent

autours de trois axes temporels: le présent, le passé, et le futur. Les systèmes axés

sur le présent permettent à un très grand nombre d’objets connectés de communiquer

en fonction d’un contexte spatial avec des temps de réponses proche du temps réel.

Nos contributions dans ce domaine permettent à ce type de système décentralisé de

s’adapter au volume de donnée à traiter en s’étendant sur du matériel bon marché. Les

systèmes axés sur le passé ont pour but de faciliter l’accès a de très grands volumes

données spatiotemporelles collectées par des objets connectés. En d’autres termes, il

s’agit d’indexer des trajectoires et d’exploiter ces indexes. Nos contributions dans ce

domaine permettent de traiter des jeux de trajectoires particulièrement denses, ce qui

n’avait pas été fait auparavant. Enfin, les systèmes axés sur le futur utilisent les tra-

jectoires passées pour prédire les trajectoires que des objets connectés suivront dans

l’avenir. Nos contributions permettent de prédire les trajectoires suivies par des ob-

jets connectés avec une granularité jusque là inégalée. Bien qu’impliquant des do-

maines différents, ces contributions s’articulent autour de dénominateurs communs des

systèmes sous-jacents, ouvrant la possibilité de pouvoir traiter ces problèmes avec plus

de généricité dans un avenir proche.

Abstract

During the past four decades, due to miniaturization computing devices have become

ubiquitous and pervasive. Today, the number of objects connected to the Internet is in-

creasing at a rapid pace and this trend does not seem to be slowing down. These objects,

which can be smartphones, vehicles, or any kind of sensors, generate large amounts of

data that are almost always associated with a spatio-temporal context. The amount of

this data is often so large that their processing requires the creation of a distributed

system, which involves the cooperation of several computers. The ability to process

these data is important for society. For example: the data collected during car journeys

already makes it possible to avoid traffic jams or to know about the need to organize

a carpool. Another example: in the near future, the maintenance interventions to be

carried out on the road network will be planned with data collected using gyroscopes

that detect potholes. The application domains are therefore numerous, as are the prob-

lems associated with them. The articles that make up this thesis deal with systems that

share two key characteristics: a spatio-temporal context and a decentralized architec-

ture. In addition, the systems described in these articles revolve around three temporal

perspectives: the present, the past, and the future. Systems associated with the present

perspective enable a very large number of connected objects to communicate in near

real-time, according to a spatial context. Our contributions in this area enable this type

of decentralized system to be scaled-out on commodity hardware, i.e., to adapt as the

volume of data that arrives in the system increases. Systems associated with the past

perspective, often referred to as trajectory indexes, are intended for the access to the

large volume of spatio-temporal data collected by connected objects. Our contributions

in this area makes it possible to handle particularly dense trajectory datasets, a problem

that has not been addressed previously. Finally, systems associated with the future per-

spective rely on past trajectories to predict the trajectories that the connected objects

will follow. Our contributions predict the trajectories followed by connected objects

with a previously unmet granularity. Although involving different domains, these con-

tributions are structured around the common denominators of the underlying systems,

which opens the possibility of being able to deal with these problems more generically

in the near future.

Contents

1 Introduction 1
1.1 From Location Awareness to Big Data . 2

1.1.1 Volume . 2
1.1.2 Velocity . 3
1.1.3 Variety . 3
1.1.4 Veracity . 3
1.1.5 Research Challenges . 4

1.2 From Fully Distributed to Decentralized Systems 4
1.2.1 Centralized Systems . 5
1.2.2 Distributed Systems . 6
1.2.3 Decentralized Systems . 6
1.2.4 Research Opportunities . 7

1.3 Benefits of Decentralization for Location-Aware Systems 8
1.3.1 Horizontal Scalability . 8
1.3.2 Service-Level Agreement . 8
1.3.3 Uniform Data Access . 9
1.3.4 Decentralized Middleware in the Cloud 9

1.4 Problem Statement . 10
1.4.1 Scope of the Research . 10
1.4.2 Research Questions . 11

1.5 Organization and Structure . 13
1.5.1 Part I: Location-Based Publish and Subscribe (Present) 14
1.5.2 Part II: Trajectory Indexing (Past) . 14
1.5.3 Part III: Trajectory Prediction (Future) . 15

1.6 Research Methodology . 15
1.7 Complete List of Publications . 17

I Present: Location-based publish and subscribe 19

2 Scaling and Load-testing Location-based publish and subscribe 20
2.1 Introduction . 21
2.2 Middleware Architecture . 21

2.2.1 Grid and Tiles . 22
2.2.2 Consistent Hashing . 22
2.2.3 Message Routing . 23

i

2.3 Traffic Data and Load Testing . 25
2.3.1 Batch Generation . 25
2.3.2 Real-time Generation . 26
2.3.3 Load Testing . 26

2.4 Demonstration . 27
2.4.1 Cluster Configuration . 27
2.4.2 Cluster Monitoring . 28
2.4.3 End-User Interactions . 29

2.5 Conclusion & Future Work . 29

3 A Horizontally Scalable and Reliable Architecture for Location-Based Publish-Subscribe 30
3.1 Introduction . 31

3.1.1 Location-Based Publish-Subscribe . 31
3.1.2 Achieving Horizontal Scalability . 32
3.1.3 Contributions & Roadmap . 32

3.2 Scaling location-based publish-subscribe . 33
3.2.1 Client-Side Model . 33
3.2.2 Server-Side Model . 34
3.2.3 Scaling horizontally . 35

3.3 A Horizontally Scalable and Reliable Architecture 35
3.3.1 Range Partitioning . 35
3.3.2 Consistent Hashing . 36
3.3.3 Min-wise Hashing Agreement . 37
3.3.4 Detailed Architecture and Algorithms . 38
3.3.5 Fault Tolerance and Reliability . 46

3.4 Theoretical Evaluation . 49
3.5 Experimental Evaluation . 50

3.5.1 Evaluation setup . 50
3.5.2 Cluster settings . 50
3.5.3 Horizontal scalability . 51
3.5.4 Reliability overhead . 51
3.5.5 Load, memory and latency . 54

3.6 Related Work . 55
3.6.1 Location-Based Publish and Subscribe . 55
3.6.2 Continuous KNN Queries . 55
3.6.3 Consistent Hashing . 56

3.7 Conclusion and future work . 56

II Past: Indexing Trajectories 58

4 An Efficient Type-agnostic Approach for Finding Sub-sequences in Data 59
4.1 Introduction . 60

4.1.1 Contributions . 61
4.2 Overall Approach . 61
4.3 Background and Model . 62

4.3.1 Tokenization . 63

ii

4.3.2 Normalization . 63
4.3.3 Data Deduplication . 63

4.4 Token-based chunking . 65
4.5 Normalization framework . 67
4.6 Evaluation . 70

4.6.1 Dataset . 70
4.6.2 Queries . 70
4.6.3 Configuration . 71
4.6.4 Environment . 71
4.6.5 Chunk distribution . 72
4.6.6 Index size . 73
4.6.7 Efficiency . 74
4.6.8 Effectiveness . 75

4.7 Toward spatial data . 76
4.7.1 Dataset . 77
4.7.2 Normalization . 77
4.7.3 Preliminary results . 78

4.8 Related Work . 79
4.9 Conclusion & Future Work . 79

5 Geodabs: Trajectory Indexing Meets Fingerprinting at Scale 81
5.1 Introduction . 82

5.1.1 Fingerprinting to the Rescue . 83
5.1.2 Contribution and Roadmap . 83

5.2 Trajectory-based querying . 84
5.2.1 Moving Objects, Trajectories and Distances 84
5.2.2 Finding Similar Trajectories and Motifs 85

5.3 Background and related work . 86
5.3.1 Information Retrieval . 86
5.3.2 Fingerprinting . 88
5.3.3 Geohashing . 89

5.4 Fingerprinting with Geodabs . 91
5.4.1 Trajectory Fingerprinting and Indexing 92

5.5 Trajectory Normalization . 95
5.5.1 Normalizing with Geohash . 95
5.5.2 Normalizing with Map Matching . 95
5.5.3 Extent of the Normalization . 95

5.6 Evaluation . 98
5.6.1 Evaluation Setup . 98
5.6.2 The Cost of Computing Distances . 101
5.6.3 The Cost of Discovering Motifs . 104
5.6.4 The Cost of Indiscrimination . 106
5.6.5 The Distribution of the Index . 109

5.7 Conclusion . 110

iii

III Future: Predicting Trajectories 111

6 Capturing complex behaviour for predicting distant future trajectories 112
6.1 Introduction . 113
6.2 Related work . 115
6.3 System Model and Definitions . 117

6.3.1 Users and Locations . 117
6.3.2 Clusters and Zones of Interest . 118
6.3.3 Trajectories . 119
6.3.4 Mobility Prediction Model . 119

6.4 Predicting Trajectories . 120
6.4.1 Evaluating Representative Trajectories . 120
6.4.2 Building Representative Trajectories . 122

6.5 Solution Architecture . 126
6.5.1 Prediction Model Extraction . 127
6.5.2 Inverted Index Update . 128
6.5.3 Answering the query . 129

6.6 Evaluation and Discussion . 129
6.7 Conclusion . 134
6.8 Future work . 134

7 Conclusion 136
7.1 Contributions . 136

7.1.1 Part I: Location-Based Publish and Subscribe (Present) 136
7.1.2 Part II: Trajectory Indexing (Past) . 137
7.1.3 Part III: Trajectory Prediction (Future) . 138

7.2 On-going and Future Work . 139
7.2.1 Spatio-Temporal Stream-Processing . 139
7.2.2 IoT Protocols . 140
7.2.3 Reproducible Research . 141

Bibliography 142

iv

List of Figures

1.1 Location-Aware Systems are at the Intersection of the Three V’s of Big Data 2
1.2 Baran’s Communication Networks (and the Corresponding System Architectures) . 4
1.3 Previous Research: (a) Centralized Perspective and (b) Distributed Perspective . . . 7
1.4 Decentralized Location-aware Middleware in the Cloud 10
1.5 Hevner’s Three Cycle View of Design Science Research [69] 16

2.1 Publications, Subscriptions, and Tiles . 22
2.2 Distributed routing based on consistent hashing 24
2.3 Cluster Monitoring . 28
2.4 Moving Subscription and Synthetic Publications 29

3.1 Example of location match . 34
3.2 Example of using the tiles function . 36
3.3 Distributing data items across processes in a ring 37
3.4 Overview of a Match Triggering Graph . 39
3.5 Distributed routing based on consistent hashing 40
3.6 Replication of a Match Triggering Graphs . 47
3.7 Non-Independence of failure in the Match Triggering Graphs 48
3.8 Ensuring independence of failure in the Match Triggering Graphs 48
3.9 Varying the ratio of publications and subscriptions (k) 52
3.10 Varying the replication factor (r) . 53
3.11 Latency (milliseconds) on a 10 nodes cluster . 54
3.12 Load average, memory and latency . 54

4.1 Content-defined chunking (CDC) . 64
4.2 Chunk distribution . 72
4.3 Index size . 73
4.4 Number of dictionary terms . 73
4.5 Throughput for exact sentence queries . 74
4.6 Throughput for cross reference queries . 74
4.7 Number of results for exact sentence queries . 75
4.8 F1 score for exact sentence queries . 75
4.9 F1 score for cross reference queries . 76
4.10 Normalization and similarity detection in GPS trajectories 77
4.11 A trajectory query (red) and some results that share sub-sequences (blue) 78

5.1 Building an Inverted Index . 86
5.2 Sharding an Inverted Index . 87

v

5.3 Geohash . 89
5.4 Space-filling Curve . 90
5.5 Sharding . 91
5.6 Construction of a geodab . 92
5.7 Trajectory Winnowing . 93
5.8 Trajectory Normalization . 96
5.9 Routes used to generate the trajectory dataset . 99
5.10 Similar trajectories extracted form the dataset . 99
5.11 Verifying configuration parameters with a PR curve 101
5.12 Increasing the number of trajectory candidates . 103
5.13 Increasing the length of the trajectory candidates 104
5.14 Motif discovery with increasing trajectory candidates 105
5.15 PR curve . 106
5.16 ROC curve . 107
5.17 Executing 100 queries on a large dataset of increasing density 108
5.18 Distribution of the trajectories in geohash areas 109
5.19 Distribution of the trajectories in a 10 nodes cluster 110

6.1 Overview of the System Model. 113
6.2 An Example of a Distant Future Query Represented with 3 Mobile Users. 114
6.3 Clusters, Cluster Groups and Zones of Interest. 118
6.4 Binary Classification in the Context of Trajectories. 120
6.5 Precision and Recall in the Context of Trajectories. 122
6.6 Layers of the Solution Architecture. 126
6.7 Extracting Representative Trajectories. 127
6.8 Updating Inverted Index. 128
6.9 Answering the Query. 129
6.10 Precision-Recall Kernel Density Estimation (KDE) for Various Thresholds Selec-

tion Methods. 131
6.11 Predictions Made with a First Order Markov Chain and an Adaptative Threshold A. 133

vi

Chapter 1

Introduction

During the past two decades, computers became ubiquitous and pervasive due to miniaturization.

People first became connected to the Internet with the adoption of broadband cellular networks.

Then, connected objects followed a similar path with the emergence of low-cost wireless-sensor

networks for the purpose of building the Internet of Things (IoT). As a result, the number of objects

communicating on the Internet today is increasing at a fast pace and this trend does not seem to slow

down. These objects, which can be smartphones, vehicles, or any kind of sensors, are almost always

associated with environmental and situational information, including a spatio-temporal context [7].

This contextual information can be used to proactively enrich the experience associated with these

devices. Therefore, the ability to process this data is of societal importance. For example, the data

collected during car journeys already makes it possible to avoid traffic jams or to share one’s car. In

the near future, the maintenance interventions to be carried out on the road network will be planned

with data collected using gyroscopes. The application domains are therefore numerous, as are the

problems associated with them. The amount of these data is often so large that their processing

requires the creation of decentralized system that involve the cooperation of several computers.

Therefore, a new class of mobile systems began to emerge; it is now often referred to as location-

aware computing, or more broadly as context-aware computing.

This thesis is structured as a collection of articles, all sharing two key characteristics: location-

awareness and decentralization. To better understand our motivations, we first discuss the big-

data challenges associated with location-aware computing in Section 1.1. We then take a system-

architecture point of view and show some of the opportunities associated with decentralization in

Section 1.2. In Section 1.3, we further detail some of the key benefits that a decentralized perspective

on location-aware computing can bring. Finally, we describe our problem statement in Section 1.4,

the organization of the collection of articles in Section 1.5, and our methodology in Section 1.6.

1

1.1 From Location Awareness to Big Data

Location-awareness broadly refers to systems and services that include a spatio-temporal context.

As the number of connected devices, vehicles and objects increases, so does the amount of location

data they generate. When dealing with large amount of data, volume, velocity, and variety are

often referred to as the three V’s of big data [54]. Furthermore, large companies, such as IBM,

often introduce veracity as a fourth V1. Whereas these dimensions are sometimes associated with

marketing jargon, we put them in perspective with location-aware computing to better understand

the underlying challenges.

Location-Aware
Systems

Velocity
Thousands of events

to be processed
every seconds

in near real-time

Variety
Spatio-temporal
data comming

from sensors and
other sources

Volume
Billions of events

to be handled
every days

Veracity
Noisy data coming
from sensors and

other sources

Figure 1.1: Location-Aware Systems are at the Intersection of the Three V’s of Big Data

1.1.1 Volume

The Volume of data obviously relates to its size. In terms of size, the location data produced by

connected devices and objects can be relatively large. For example, it is common for mobile network

operators to collect several billions of location-based events per day. In this context, a wide range

of value-added applications, such as traffic monitoring or urban planning, benefit from being able

to process a very large amount of data. Such a large amount of data is typically greater than what

a single networked computer can process, and making sense of a large volume of location-aware

data over a long period of time is a real challenge. In this thesis, we devise scalable solutions, i.e.,

solutions that can adapt to a very large volume of data.
1https://www.ibmbigdatahub.com/infographic/four-vs-big-data

2

https://www.ibmbigdatahub.com/infographic/four-vs-big-data

1.1.2 Velocity

The Velocity of data refers to the speed at which it is produced, ingested and transmitted. Location-

aware data are usually associated with a very high velocity. Billions of events per days correspond

to throughputs of thousands of events per seconds. If these events have to be continuously processed

then such velocity is more than what the usual networked computer can sustain. More importantly,

many use-cases require a very low end-to-end latency. In other words, the time needed for an event

to propagate from one end of the system to the other should remain very short, even if some costly

processing is involved. Therefore, location-aware systems come with many difficult challenges

in terms of velocity. In addition to being able to scale, we reduce end-to-end latency by moving

computation closer to the data.

1.1.3 Variety

The Variety of data refers to its diversity in terms of source, format, and structure. In this regard,

sensor data and spatio-temporal data are not an exception as their variety is rich. For instance, a

spatial context can be represented with a wide range of geometries that can be expressed in different

spatial reference systems. As of today, there is no overall consensus on the protocols and formats

used to transport such data. As a result, variety is clearly a critical issue associated with location-

aware systems. In this thesis, we do not consider location-aware events as point in times, but as

geometries, hence we address one challenging aspect associated with these dimensions.

1.1.4 Veracity

The Veracity of data deals with the overall quality of the data, which might contain abnormalities. In

the context of this thesis, a poor GPS signal will obviously impact the quality of the data recorded

by a sensor. Nevertheless, the quality of spatio-temporal data is rarely questioned and trajectory

datasets are almost never associated with a ground truth that would allow to assess the effectiveness

of an index. As a result, researcher often favor techniques that do not require such ground truth to

operate, making it difficult to trade effectiveness for efficiency. In this thesis, we address this issue

and introduce techniques to qualitatively assess trajectory indexes.

3

1.1.5 Research Challenges

It could be tempting to rely on traditional data-management systems to build location-aware sys-

tems. However, as highlighted in Figure 1.1, location-aware systems are at the crossroads of the

three V’s of big data. Traditional data-management systems usually deal well with one of these

dimensions, but to the detriment of the others. For example, many relational database management

systems, such as MySQL or PostgreSQL, integrate features that are very useful for dealing with any

kind of spatial data (Variety). However, none of these systems are intended to deal with the billions

of spatio-temporal events (Volume) that need to be ingested and indexed in near real-time (Velocity).

As a result, many challenges arise when two or three of these dimensions overlap and our work

addresses some of them.

1.2 From Fully Distributed to Decentralized Systems

In his seminal paper, Paul Baran depicted three kinds of communication networks: the centralized,

the decentralized, and the distributed [6]. As highlighted in Figure 1.2a, the nodes of a centralized

network are organized hierarchically as a star. Here, the central node is a single point of failure, i.e.,

its destruction affects every leaf node of the network and results in an impossibility to communicate.

Ideally, as depicted in Figure 1.2c, the nodes of a distributed network should be organized as a mesh.

Here, every node participates in routing and relaying the information and, as a result, the destruction

of a single node does not affect the ability of the network to operate. However, as highlighted in

Baran’s paper and in Figure 1.2b, the nodes of a networks are often organized, for pragmatic reasons,

in a decentralized fashion, i.e, as a mixture of star and mesh components. In such a network, the

destruction of a central node only affects a small number of leaf nodes.

(a) Centralized (Client-Server) (b) Decentralized (Cloud/Edge) (c) Distributed (P2P/MANET)

Figure 1.2: Baran’s Communication Networks (and the Corresponding System Architectures)

4

Today, the terms distributed and decentralized are often used interchangeably and Baran’s clas-

sification might seem a bit outdated. Since 1964, networking technologies evolved a lot and physical

networks are now hidden by one or more overlay networks that abstract the underlying infrastruc-

ture. However, the pragmatic observation regarding the organization of communication networks

still holds. For instance, the bandwidth associated with connected devices is usually not uniformly

distributed. Therefore, it is common to serve connected devices with centralized computers, typi-

cally located in a data center and associated with a large bandwidth. As the number of connected

devices increases, several computers localized in a centralized datacenter might cooperate to pro-

vide a service, hence the (de)centralization. In this regard, this terminology allows to make subtle

distinction between communication systems.

In this section, we use Baran’s classification to categorize some of the research previously con-

ducted by our research group. We show that this work either falls in the centralized category or in the

distributed category. Although being better than its counterparts from a fault tolerance viewpoint,

the distributed perspective is also associated with some drawbacks. Therefore, we highlight the

opportunities that arise from adopting a pragmatic decentralized perspective, laying out the founda-

tion of the present collection of articles. We do not include additional references in this introduction

because each chapter of the thesis is self-contained and discusses the related work individually.

1.2.1 Centralized Systems

In Baran’s view, the leaf nodes of a centralized network contact a central node to communicate

with each other. In today’s terminology, the clients of a centralized system contact a central server

that is responsible for providing an application. That is the typical client-server model depicted in

Figure 1.2a. It comes with many advantages. For example, from the point of view of a client, con-

tacting a central entity is easier than discovering peers. Furthermore, from an application standpoint,

maintaining a consistent state in a centralized setup is easier than in a distributed setup. However,

centralized systems also come with limitations. For instance, a central server is a single point of

failure that makes the system more vulnerable. In addition, the resources of a server are limited

and might become a scalability bottleneck. Many popular relational database management systems,

such as PostgreSQL and MySQL, were initially characterized by a centralized architecture. Before

we began our research on decentralized location-aware systems, some of the work of our research

group used a centralized perspective to devise and evaluate location-aware abstractions.

5

1.2.2 Distributed Systems

Ideally, in Baran’s view, all the nodes of a distributed network should be organized as an intercon-

nected mesh. As depicted in Figure 1.2c, in today’s peer-to-peer (P2P) systems, the tasks associated

with an application are partitioned between clients, also called peers. Such fully distributed sys-

tems are usually considered as being more fault tolerant than their centralized counterparts. How-

ever, from an application viewpoint, they also come with tradeoffs that are difficult to make in

the context of a wide area network. For instance, the CAP Theorem states that given consistency,

availability, and partition tolerance, any distributed system can guarantee at most two of those

properties [60]. Many popular P2P applications, such as BitTorrent, Kademlia or Pastry, adopt a

fully distributed architecture that typically relaxes consistency in favor of availability and partition

tolerance [35, 99, 113]. The features provided by these applications however remain relatively sim-

ple (e.g., data dissemination); and the clients accept to live with weak forms of consistency, as long

as they are eventually able to retrieve the data. A mobile ad hoc network (MANET) is another

form of a P2P network that is said to be infrastructure-less, because the nodes are made of mobile

devices that move and interconnect wirelessly. Each node knows its direct neighbourhood and the

network is reconfigured continuously. As a result, the network is very unstable and network parti-

tions are extremely frequent. Location-awareness in MANETs have been an active research topic

in distributed systems, because it involves complex data-dissemination algorithms. However, as of

today, MANETs have not been massively adopted by mobile application developers, hence not by

end-users. This is probably due to the mismatch between the level of service required by end-users

and the loose guarantees offered by MANETs. This mismatch is probably a direct consequence of

the aforementioned CAP tradeoffs. MANETs typically do not function when devices equipped with

different networking technologies are supposed to connect with each others. Before we began our

research on decentralized location-aware systems, most of the work of our research group focused

on the challenging algorithmic problems associated with the distributed perspective.

1.2.3 Decentralized Systems

In Baran’s view, communication networks are often decentralized for pragmatic reasons. As high-

lighted in Figure 1.2c, in today’s terminology, it is common for an application to rely on a set of

servers that cooperate in a decentralized fashion. In such a setup, the servers are usually deployed

in controlled environments, such as a data center or a cloud. In contrast to MANETs, the network

of a data center is very stable and network partitions are relatively rare. Therefore, consistency is

mainly traded to guarantee a very low latency [17, 3]. As a result, though the CAP tradeoffs still

have to be made in a controlled environment, it is easier to provide a uniform level of service to

6

a majority of end-users. In this regard, popular NoSQL databases and large-scale data processing

engines, such as Apache Cassandra, Apache Spark or Apache Kafka, can be seen as decentralized

systems [88, 132, 83]. In these systems, the networked computers responsible for the application are

deployed in a controlled environment, whereas the clients can be located in a wide-area network. It

is worth noting that, the current edge computing trend pushes the bounderies of the controlled envi-

ronment toward the end-users and, in this regard, can also be seen as a decentralized approach [75].

In other words, as the overall network infrastructure improves, some services can be moved at the

edge, closer to the end-user. Before this thesis, none of the work which involved our research group

approached location-aware systems from the decentralized perspective. As none of the work of

our research group previously adopted this perspective, we explored the effects of the decentralized

perspective on location-aware systems.

1.2.4 Research Opportunities

2005 2010 2015

(b)
[58

]

(b)
[43

]

(a)
[44

]

(a)
[45

] - (b)
[55

]

(a)
[46

, 4
7]

(b)
[57

, 5
6]

(b)
[73

]

(b)
[71

, 1
6]

(a)
[72

] - (b)
[12

, 1
23

, 7
0]

(b)
[13

]

(b)
[14

]

(b)
[15

]

Figure 1.3: Previous Research: (a) Centralized Perspective and (b) Distributed Perspective

In order to better understand the research opportunities associated with the decentralized per-

spective, we recall some of the previous work people from our research group were involved

in. Location-awareness was first approached from an ad-hoc-network viewpoint, with the defini-

tion of ad hoc applications and the definition of the location-based publish and subscribe abstrac-

tion [58, 43]. Then, the Pervaho middleware, which was initially aimed at being fully distributed,

introduced centralized components for developing, testing, and evaluating mobile context-aware

applications [44, 45, 46, 47]. From a distributed point of view, progress was made on broadcasting

and neighbour-detection algorithms for MANETs [55, 57, 56, 73, 71, 16, 12, 123, 13, 14, 15, 70].

However, in the context of real-world location-aware applications, centralized approaches were still

preferred for pragmatic reasons [72], i.e., MANET applications are very hard to deploy and main-

tain. As depicted in Figure 1.3, the previous work either falls in the centralized or in the distributed

perspectives. As highlighted in Section 1.2.3, the centralized and the distributed perspectives both

7

have drawbacks that can be addressed with the decentralized perspective. Making a step backward

from a distributed to a decentralized perspective opens new research avenues and enables pragmatic

solutions to difficult problems that we explored in this thesis.

1.3 Benefits of Decentralization for Location-Aware Systems

We adopt a decentralized perspective to solve some of the issues associated with location-aware

computing. None of the previous research conducted in our research group approached location-

aware systems from this perspective. Therefore, we give here a bird’s-eye view of some of the

benefits that come with and the opportunities that arise from decentralization.

1.3.1 Horizontal Scalability

The capacity of a centralized system is bound by the maximal capacity of a single networked com-

puter that can therefore constitute a bottleneck. Such a system is said to be vertically scalable,

because as the demand for more computing resources grows, the capacity of the central computer

needs to be adjusted, but this is only possible up to a certain point. In a distributed system, the

capacity of the system should ideally be proportional to the number of computers involved. In this

regard, such a system is said to be horizontally scalable, i.e., its capacity grows as more comput-

ers join the system. As its distributed counterpart, a decentralized system can be designed to scale

horizontally or scale-out. The ability to scale-out or scale-in as more or less computing resources

are needed is a significant opportunity for location-aware systems. Our contributions fullfill this

horizontal scalability requirement.

1.3.2 Service-Level Agreement

A peer-to-peer system is considered as being more robust than a decentralized system, in the sense

that a larger proportion of the networks is allowed to fail. However, as highlighted in Section 1.2.2,

tradeoffs that directly affect the quality of service in terms of availability, consistency and partition

tolerance have to be made. In a wide-area network, the computing-power, bandwidth and latency

associated with networked computers varies greatly. Therefore, making such tradeoffs is particu-

larly hard and establishing a service-level agreement, for example in terms of low latency, is nearly

impossible. In addition, failures that occur outside of a controlled environment are very difficult to

detect and to correct. In contrast, a controlled environment, such as a data center, alleviates these

8

issues. It is therefore possible to devise the system accordingly and to make stronger assumptions

regarding the level of service provided to end-users. Our contributions give the ability to control

and assess the level of service more precisely.

1.3.3 Uniform Data Access

In contrast to a distributed system deployed in a wide-area network, a decentralized system de-

ployed in a controlled environment enables fast and uniform access to the data. For instance, even if

reliably accessing all past location data seems difficult in a MANET, it is achievable in a controlled

environment such as a data center. Being able to access the networked computers responsible for

the data in a reliable and uniform way is crucial for performing data analysis. Therefore, the decen-

tralized perspective enables new opportunities, such as the possibility to index and to analyze past

location data in order to improve the end-user experience. Our contributions exploit such a uniform

data access, thus enabling trajectory indexing and trajectory prediction.

1.3.4 Decentralized Middleware in the Cloud

A decentralized middleware in the cloud can be used to let objects, which rely on different net-

working technologies, communicate with each other according to a spatio-temporal context. Cell

broadcast typically addresses a similar issue, but it is restricted to the scope of cellular networks.

GeoCast also addresses the same problem, but there is not yet a consensus that would allow for the

use of it at the level of the Internet [103]. Pragmatically, a decentralized middleware for location-

aware computing deployed is the best alternative, provided that such a middleware scales horizon-

tally in the cloud. As illustrated in Figure 1.4, at a physical level, connected objects often rely

on different networking technologies to communicate. For instance, mobile users typically make

use of a cellular network, whereas vehicles regularly connect to cheaper networking technologies,

such as the LoRa network [117]. At a network level, gateways can be used to let devices equipped

with different networking technologies communicate with each other, thus enabling the Internet of

Things. Unfortunately, the network protocols available at this level do not enable connected objects

that share a spatio-temporal context to communicate anonymously with each other. Therefore, a

decentralized middleware can be deployed at the level of the cloud to provide this kind of service.

9

Physical Level

Network Level

Cloud Level

Figure 1.4: Decentralized Location-aware Middleware in the Cloud

1.4 Problem Statement

In this collection of articles, we address the following overall question: What are the effects of a

decentralized perspective on location-aware computing? As this question is very broad, we first

restrict its scope to a set of location-aware systems, which are discussed hereafter. Then, we further

divide our main research question into sub-questions.

1.4.1 Scope of the Research

We focus on three main types of location-aware systems: location-based publish and subscribe,

trajectory indexing, and trajectory prediction. To better understand the scope of our research, it is

worth noting that each of these systems is associated with a spatio-temporal context. Furthermore,

each of them take a different perspective on the temporal dimension, which is reflected in the title

of the thesis.

Location-Based Publish and Subscribe (Present) Location-based publish and subscribe systems

deals with near real-time data and are clearly anchored in the present. This communication

paradigm enables connected moving objects to communicate with each other according to

10

a spatio-temporal context. When the spatio-temporal contexts of a publication and a sub-

scription overlap, the publication is transmitted to the subscriber. Location-based publish

and subscribe systems are said to be anonymous, because publishers and subscribers do not

need to know each other, and asynchronous, because matching publications are pushed to the

subscriber.

Trajectory Indexing (Past) Trajectory indexing systems deals with a massive volume of past data.

The location histories of moving objects, called trajectories, can be used in various applica-

tions, such as car-sharing, traffic analysis, or urban planning. The utility of a large trajectory

dataset is tightly coupled to the efficiency and the effectiveness of the access methods, referred

to as trajectory indexing. In our context, we consider two use cases formulated with a query

trajectory: the retrieval of similar trajectories, and the retrieval of similar sub-trajectories.

Trajectory Prediction (Future) Trajectory prediction systems aims at foresee future data by mak-

ing sense of past data. Given the past trajectories and the current location of a moving object,

the problem consists in predicting the most probable paths that the moving object will follow.

Trajectory prediction systems can typically be used for various applications, such as location-

based marketing. Also, good trajectory predictions can influence the way moving entities

behave.

1.4.2 Research Questions

Keeping the scope of our research in mind, we now formulate the following research questions.

Q1 How can decentralized location-based publish and subscribe systems be tested?

One of the main issues associated with location-based publish and subscribe systems is the

lack of testbeds and realistic test data. Some trajectory generation systems, such as Berlin-

MOD, have been created to generate synthetic trajectories. However, this kind of test data

typically target batch-processing use cases and do not provide the tooling required to gener-

ate synthetic data in near real-time. Therefore, our goal is to devise and implement such a

testbed for location-based publish and subscribe systems.

Q2 How can a decentralized location-based publish and subscribe system scale horizontally?

Decentralized key-value stores, such as Apache Cassandra, use partitioning strategies, such

as consistent-hashing, to evenly spread a key space across a set of networked computers, thus

enabling horizontal scalability. Unfortunately, in the context of location-based publish and

subscribe systems, a spatio-temporal context can span across several dimensions. As a result,

11

in contrast to a key that matches with one partition, a spatio-temporal context can overlap

with several partitions. It is therefore not evident if such partitioning strategy can be used to

partition a location-based publish and subscribe systems. Our aim is therefore to investigate

and address the potential issues associated to this question.

Q3 How can a decentralized location-based publish and subscribe system be made reliable?

In a decentralized key-value store, reliability is usually attained by replicating the data on sev-

eral networked computers called replicas. The location-based publish and subscribe paradigm

is slightly more complicated than a key-value store. When a match occurs between a publi-

cation and a subscription, a notification has to be triggered and pushed to the end user. As

several failures might occur along the way from one end of the system to the other, our goal is

to address reliability with a replication strategy. In addition, we need to understand the impact

of such a replication mechanism on the overall scalability of the system.

Q4 What are the best access methods for large volumes of trajectories?

Many challenges are associated with very large sets of trajectories. First, in terms of queries,

we could search for similar trajectories, but also for trajectories that share similar sub-trajectories.

Second, a large trajectory dataset could contain many relevant results for a given query be-

cause of its density. As a similarity measure is used to sort relevant results, the performance

of the similarity measure can become a bottleneck when a trajectory dataset is very dense.

Third, when performing queries, the traditional methods for trajectory indexing assume exact

answers. Hence, the obvious tradeoff is to trade exactness for shorter execution time. Here,

we devise new algorithms for trajectory indexing that address these challenges.

Q5 How can we qualitatively assess an index of trajectories?

As mentioned, given a query, traditional methods for trajectory indexing assume exact an-

swers. In such a context, performance is the sole measure of interest. As our aim is to trade

exactness for better performance, we need to understand and assess what makes the quality

of a result. Therefore, we devise a testbed for trajectory indexing that can be used to prove

that a method is good, both in terms of performance and in terms of quality.

Q6 How can a very large index of trajectories be decentralized?

In terms of volume, a trajectory index can be too large to fit on a single networked com-

puter. A partitioning strategy is therefore necessary to decentralize the index. The existing

data structures for trajectory indexing are relatively complex, difficult to reason about, and

sometimes require being reorganized after an insertion. Therefore, we include the scalability

issue into our reasoning when devising algorithms for trajectory indexing.

12

Q7 How can we predict future trajectories on the basis of past trajectories?

Mobility prediction has been an active field of research during recent years. Interestingly,

as of today, most mobility prediction techniques either focus on a short horizon, with the

estimation of motion functions, or on a much longer horizon, with the prediction of the next

points of interest. We fill this gap with the prediction of the trajectories that a user will follow

to visit its next point of interest. It is worth noting that mobility prediction is of great interest

for many applications such as targeted advertisement.

Q8 How can we qualitatively assess the accuracy of a prediction system for future trajectories?

When predicting the next point of interest of a user, the prediction is either correct or wrong.

Therefore, the quality of such a prediction system can simply be assessed with a binary clas-

sifier. In the context of a trajectory, the problem is slightly different because the trajectory

of a user between two point of interests can differ depending on external factors, such as the

conditions of the road network. A prediction can therefore be partially correct or partially

wrong. Given a training dataset and a validation dataset, we devise a more nuanced model for

assessing the quality of the trajectories foreseen by a prediction system.

Q9 How can a prediction system for future trajectories be decentralized?

Predicting future trajectories requires many computational resources. The past data of a user

have to be regularly processed in order to build a prediction model. Furthermore, new predic-

tions have to be performed every time the user moves from one point of interest to the other.

Therefore, our goal is to understand how such prediction systems could be decentralized and

scaled.

1.5 Organization and Structure

This thesis is composed of five articles that were published in conference and workshop proceedings

in computer science. These articles highlight some of the results we obtained during five years of

research at the University of Lausanne. We structure the collection of articles according to the

three temporal perspectives previously identified: Present, Past, and Future. The articles are self

contained, i.e., each of them introduces its own terminology and can be read independently from the

others. As a consequence, the terminology might differ slightly from one chapter to the other and

the content of the chapters sometimes overlap. Hereafter, we highlight some of our contributions.

13

1.5.1 Part I: Location-Based Publish and Subscribe (Present)

The load-testing tool presented in Chapter 2 is our answer to question Q1 How can a decentralized

location-based publish and subscribe system be tested? In this demonstration paper, we present

and implement a testbed that generates trajectory data in real time and that can be plugged into

an existing location-based publish and subscribe system. The trajectories correspond either to ran-

domly moving entities or to entities moving on an existing road network. In addition, we present

an preliminary version of a decentralized architecture for location-based publish and subscribe. We

also introduce monitoring tools that enable us to evaluate our architecture in terms of load, memory

consumption, and throughput.

In Chapter 3, we present a more mature version of our decentralized location-based publish

and subscribe system. We show that a min-wise hashing agreement can be used to keep the over-

head associated with partitioning very low, hence answering question Q2 How can a decentral-

ized location-based publish and subscribe system scale horizontally? We evaluate our system and

demonstrate that it scales horizontally in a data center made of up to 200 virtual machines. We

discuss several aspects associated with the reliability of the system in order to answer the ques-

tion Q3 How can a decentralized location-based publish and subscribe system be reliable? We

show that a routing mechanism that involves several steps in the decentralized system can be sub-

ject to non-independence of failure. We address this issue by grouping the networked computer of

the decentralized system in a way that guarantees independence of failure. We also show that our

reliability mechanism introduces an overhead that remains proportional to the replication factor.

1.5.2 Part II: Trajectory Indexing (Past)

In Chapter 4, we explore the idea of using data deduplication to index data in a type-agnostic man-

ner, i.e., regardless of its type. We show that, even if data deduplication is originally intended at

identifying exact duplicates in binary data, normalization can be used in conjunction with dedupli-

cation to detect similarities in any kind of sequential data. We demonstrate the feasibility of our

approach with textual data and introduce the idea of using it to index trajectory data. We highlight

some promising results, giving a preliminary answer to the question Q4 What are the best access

methods for large volumes of trajectories?

In Chapter 5, we focus solely on trajectory data. We replace data deduplication with a more

specialized method inspired by data winnowing, which is proven to be more efficient at detecting

similarities. We also exemplify the density issue associated with large volumes of trajectory data

14

and demonstrate that our method efficiently addresses this problem. As previously mentioned, our

approach trades accuracy for performance. Therefore, we characterize this tradeoff more precisely

to answer question Q5 How can we qualitatively assess an index of trajectories? Using the synthetic

trajectories generated with the testbed introduced in Chapter 2, which is necessary to establish a

ground truth, we put forth a method to qualitatively evaluate a trajectory index. Furthermore, we

show that our method comes with interesting properties which can be used to partition the index,

hence addressing question Q6 How can a very large index of trajectories data be decentralized? We

show with a large worldwide dataset that a trajectory index can be evenly balanced across several

networked computers.

1.5.3 Part III: Trajectory Prediction (Future)

In Chapter 6, we introduce the problem of predicting trajectories. As for mobility prediction, we

highlight the literature gap that exists between the short horizon and the distant horizon. We show

that a combination of techniques, which include the prediction of the next point of interest of a

user and the discretization of its trajectories, can be used to infer the trajectory that a user will

follow, hence answering question Q7 How can we predict future trajectories on the basis of past

trajectories? As previously stated, the quality of a trajectory prediction system cannot be assessed

with a binary classifier. Therefore, we put forth a model for assessing such a prediction system in

order to answer question Q8 How can we qualitatively assess the accuracy of a prediction system

for future trajectories? Given that mobility prediction is associated with the scope of a user, we give

some preliminary insights on how question Q9 How can a prediction system for future trajectories

be decentralized? could be addressed.

1.6 Research Methodology

Although we did not formally and systematically apply a design science research methodology, our

research process can be put in perspective with the three cycles of design science research, illus-

trated in Figure 1.5 and introduced by Alan Hevner [69]. For instance, the overall reflexion about

taking a step backward from distributed to decentralized systems has been heavily influenced by

workshops in design thinking and design science. Therefore, from the relevance cycle perspec-

tive, this reflexion can be seen as an intent to align the research in location-aware computing with

the needs of end users in a better way [106]; this alignment resulted in the identification of new

research problems and opportunities. From the rigor cycle perspective, we continuously explored

the existing knowledge in our field of research to lay out a foundation for our contributions and to

15

validate their novelty. For example, though trajectory indexing is well covered in the literature, the

density problem addressed by our research had not been identified previously, because of the lack of

trajectory datasets showcasing this issue. Finally, from the design cycle perspective, we iteratively

built and evaluated our artifacts, continuously integrating and producing results from and for the

relevance and rigor cycles.

Design Science Research Knowledge BaseEnvironment

Application Domain

Design
Cycle

Relevance Cycle
- Requirement
- Field Testing

Rigor Cycle
- Grounding
- Additions to
 Knowledge Base

Evaluate

Build Design
Artifacts and
Processes

- Technical Systems
- Problem and
 Opportunities

- People
- Organizational Systems

Foundations
- Scientific Theories
 and Methods
- Experience and
 Expertise

- Meta-Artifacts
 (Design Products and
 Design Processes)

Figure 1.5: Hevner’s Three Cycle View of Design Science Research [69]

As our contributions have been published mainly in computer science, we used formal and em-

pirical methods to build and evaluate our artifacts. We usually began our articles by identifying

a problem and by defining a model (often formulated in mathematical terms) for reasoning about

that problem. On this basis, we set evaluation criterions and we formulated original algorithmic

solutions that specifically address the problem. From a formal perspective, these solutions are

sometimes evaluated theoretically, i.e., in terms of their computational complexity. From an em-

pirical perspective, these solutions are implemented and compared with existing solutions on real

or synthetic datasets by using the evaluation criterions. This process is iterative and continuous in

the sense that the implementation and evaluation of an algorithm, which might come from the rigor

cycle, often enable us to better understand the problem and to successively refine the model and the

solution accordingly.

16

1.7 Complete List of Publications

The present collection of articles does not include all the work that was done during this research.

For example, decentralization comes at a cost: storing all the data in a controlled environment, such

as a data center, can greatly affect the privacy of end-users. According to the general data protection

regulation enforced in Europe, location data is considered as being highly sensitive. Therefore,

during our research, we addressed some of the issues associated with the privacy of location-based

services. The following list of publication integrates the articles of the present collection and the

articles published to address such side issues.

1. Bertil Chapuis and Benoı̂t Garbinato. Geodabs: Trajectory indexing meets fingerprinting at

scale. In 38th International Conference on Distributed Computing Systems (ICDCS). IEEE,

2018

2. Vaibhav Kulkarni, Arielle Moro, Bertil Chapuis, and Benoı̂t Garbinato. Capstone: Mobility

modeling on smartphones to achieve privacy by design. In International Conference on Trust,

Security And Privacy In Computing And Communications (TrustCom). IEEE, 2018

3. Mauro Cherubini, Alexandre Meylan, Bertil Chapuis, Mathias Humbert, Igor Bilogrevic, and

Kévin Huguenin. Towards usable checksums: Automating the integrity verification of web

downloads for the masses. In 25th ACM Conference on Computer and Communications

Security. ACM, 2018

4. Bertil Chapuis and Benoı̂t Garbinato. Scaling and load testing location-based publish and

subscribe. In 37th International Conference on Distributed Computing Systems (ICDCS),

pages 2543–2546. IEEE, 2017

5. Vaibhav Kulkarni, Arielle Moro, Bertil Chapuis, and Benoı̂t Garbinato. Extracting hotspots

without a-priori by enabling signal processing over geospatial data. In Proceedings of the

25th ACM SIGSPATIAL International Conference on Advances in Geographic Information

Systems, page 79. ACM, 2017

6. Bertil Chapuis, Benoı̂t Garbinato, and Lucas Mourot. A horizontally scalable and reliable

architecture for location-based publish-subscribe. In 36th Symposium on Reliable Distributed

Systems (SRDS), pages 74–83. IEEE, 2017

7. Vaibhav Kulkarni, Bertil Chapuis, and Benoı̂t Garbinato. Privacy-preserving location-based

services by using intel sgx. In Proceedings of the First International Workshop on Human-

centered Sensing, Networking, and Systems, pages 13–18. ACM, 2017

17

8. Bertil Chapuis, Benoı̂t Garbinato, and Periklis Andritsos. An efficient type-agnostic approach

for finding sub-sequences in data. In 19th International Conference on High Performance

Computing and Communications; 15th International Conference on Smart City; 3rd Inter-

national Conference on Data Science and Systems (HPCC/SmartCity/DSS), pages 270–277.

IEEE, 2017

9. Bertil Chapuis, Arielle Moro, Vaibhav Kulkarni, and Benoı̂t Garbinato. Capturing com-

plex behaviour for predicting distant future trajectories. In Proceedings of the 5th ACM

SIGSPATIAL International Workshop on Mobile Geographic Information Systems, pages 64–

73. ACM, 2016

10. Bertil Chapuis, Benoı̂t Garbinato, and Periklis Andritsos. Throughput: A key performance

measure of content-defined chunking algorithms. In 36th International Conference on Dis-

tributed Computing Systems Workshops (ICDCSW), pages 7–12. IEEE, 2016

11. Bertil Chapuis and Benoı̂t Garbinato. Knowledgeable chunking. In International Conference

on Networked Systems, pages 456–460. Springer, Cham, 2015

18

Part I

Present: Location-based publish and
subscribe

19

Chapter 2

Scaling and Load-testing Location-based
publish and subscribe

Bertil Chapuis and Benoı̂t Garbinato. Scaling and load testing location-based publish and subscribe.

In 37th International Conference on Distributed Computing Systems (ICDCS), pages 2543–2546.

IEEE, 2017

Abstract

The rise of the Internet of things (IoT) poses massive scalability issues for location-based services.

More particularly, location-aware publish and subscribe services are struggling to scale out the com-

putation of matches between publications and subscriptions that continuously update their location.

In this demonstration paper, we propose a novel distributed and horizontally scalable architecture

for location-aware publish and subscribe. Our middleware architecture relies on a multi-step rout-

ing mechanism based on consistent hashing and range partitioning. To demonstrate its scalability,

we present a traffic data generator, which, in contrast to existing generators, can be used to perform

real-time load tests. Finally, we show that our architecture can be deployed on a small 10-node

cluster and can process up to 80,000 location updates per second producing 25,000 matches per

seconds.

20

2.1 Introduction

Today, connected mobility is no longer reserved to human beings. More and more moving objects

are connected to the Internet and, with initiatives such as the LoRa Alliance1, even insignificant

objects may soon become talkative. As highlighted by Gartner2 and IDC3, this trend is not likely to

stop, and there may be between 25 to 30 billion connected objects by 2020.

In this context, when it comes to developing context-aware applications that want to take advan-

tage of the Internet of things (IoT) ecosystem, the location-based publish and subscribe paradigm is

of particular interest. With this communication paradigm, connected objects can issue publications

and subscriptions that are geographically scoped and that move with them. A match occurs between

a given publication and a given subscription if a context criterion and a content criterion are both

met simultaneously. On one hand, a proximity condition between a publication and a subscription

can be expressed by a context criterion. On the other hand, a semantical relationship between a

publication and a subscription can be embodied by a content criterion.

Although the location-based publish and subscribe paradigm offers a lot of flexibility and ex-

pressiveness, its implementation poses difficulties in terms of horizontal scalability. As of today,

the systems described in the literature have addressed this scalability issue by proposing verti-

cally scalable solutions (i.e., with one computing unit being responsible for the full workload)

[32, 36, 43, 71, 93, 125]. Obviously, the exponential growth of the IoT ecosystem can easily exceed

the load that is sustainable for a vertically scalable computing unit. In this demonstration, we show-

case a horizontally scalable middleware architecture for the location-based publish and subscribe

communication paradigm, which can be deployed on clusters made of commodity hardware. In

addition, we present near real-time load testing tools that can be used to load test and benchmark

such architecture by mocking traffic data in real time.

2.2 Middleware Architecture

In this section, we describe a horizontally scalable distributed middleware architecture supporting

the location-based publish and subscribe communication paradigm. This architecture addresses the

problem of distributing the computation of matches among cluster nodes in a way that allows the

overall system to scale out or scale horizontally. In contrast to centralized spatial data structures,
1https://www.lora-alliance.org
2http://www.gartner.com/newsroom/id/3165317
3https://www.idc.com/getdoc.jsp?containerId=US40755816

21

https://www.lora-alliance.org
http://www.gartner.com/newsroom/id/3165317
https://www.idc.com/getdoc.jsp?containerId=US40755816

which aim at taking advantage of geographical proximity, our solution uses consistent hashing in

conjunction with range partitioning expressed with the notion of tiles in order to distribute the

computation of matches across a cluster.

2.2.1 Grid and Tiles

t1 t2 t3

t4 t5 t6
pub1

sub1

pub2

Figure 2.1: Publications, Subscriptions, and Tiles

The notion of grid layout, that divides the world into sets of tiles, is typically used by map services

such as Google Maps4 or Mapbox5 to serve static data. As illustrated in Figure 2.1, we use a similar

approach to distribute the computation of matches between publications and subscriptions among

the nodes of a cluster. However, our use case is more complex since publications and subscriptions

continuously move from tile to tile and matches must be emitted in real time in reaction to these

updates.

2.2.2 Consistent Hashing

In general, in order to scale horizontally, distributed hash tables partition data items across a cluster

of nodes with a family of hash functions called consistent hashing [78, 79]. It is common to think

about the range of hash values produced by consistent hashing as a ring. In such a ring, the largest

possible hash value convolutes to the smallest possible hash value [38]. Each node of the cluster
4https://maps.google.com
5https://www.mapbox.com

22

https://maps.google.com
https://www.mapbox.com

is placed on the ring at a fixed position which can be obtained by hashing the unique identifier of

that node. To locate the node responsible for storing a given data item, the identifier of that item is

first hashed and then the first node with a placement value greater than the resulting hash value is

selected.

2.2.3 Message Routing

Our architecture relies on range partitions obtained by tiling of the earth’s surface and on a set

of consistent hashing functions to partition and distribute the load of computing matches between

publications and subscriptions. In other words, consistent hashing functions are responsible for

evenly distributing the load on cluster nodes, whereas the subdivision of the earth’s surface into

tiles is used as a partitioning criteria. Figure 2.2 shows how these notions of tiling and consistent

hashing are assembled together to form our middleware architecture.

Publication Routing

The routing of publications from a moving entity to a tile is illustrated in Figure 2.2a:

1. When adding a publication to the middleware or updating its location, the moving entity first

contacts a frontend service. The frontend service typically runs on every node of the cluster

and is placed behind a load balancer, so the moving entity does not know which service is

contacted.

2. The frontend service then routes the request to a publication manager service using consistent

hashing on the identifier of the publication. This intermediary step is required to manage the

changing state of a publication transparently.

3. Finally, publications are routed to a tile manager service using consistent hashing on tile

identifiers. Since a publication state changes and can move from tile to tile, some messages

are generated to add publications to tiles, while others are generated to remove publications

from tiles.

Subscription Routing

As illustrated in Figure 2.2b, the routing of subscriptions is symmetrical to the routing of publica-

tions and achieves the same purpose:

23

Publisher

Publication
Manager

Tile
Manager

Tile
Manager

Frontend

① ②

③

③

(a) Publication routing

Subscriber

Sub
Manager

Frontend

Tile
Manager

Tile
Manager

④

⑤

⑥

⑥

(b) Subscription routing

Subscriber

Tile
Manager

Tile
Manager

Match Filter

⑦

⑦

⑧

(c) Match routing

Figure 2.2: Distributed routing based on consistent hashing

24

4. The addition or update of a subscription first goes through a frontend service.

5. It is then routed to the subscription manager node responsible for it, using consistent hashing

on the subscription identifier.

6. Finally, the subscription is routed to the correct tile manager service using consistent hash-

ing on tile identifiers. As a subscription moves, the subscription manager is responsible for

generating the correct tile registration and deregistration messages.

Match Routing

The tile manager service is responsible for triggering matches when a publication and subscription

overlap in a tile. Figure 2.2c illustrates the routing of a matching publication back to the subscrip-

tion:

7. Matches between publications and subscriptions are first routed to a match filter service using

consistent hashing on the subscription identifier.

8. The match filter may look superfluous but is required since the same match may be computed

on several tiles on different nodes. Thus, a filtering mechanism is required and the match

filter service is responsible for eliminating duplicates and transmitting matches to subscribers

only once.

2.3 Traffic Data and Load Testing

Spatio-temporal and traffic data generators are regularly used to benchmark moving object databases.

In this section, we highlight some prior batch data generators and show the need for a new kind of

generator that produces data in real time with the intent to load test location-based services.

2.3.1 Batch Generation

The Brinkoff data generator [19] uses a real road network as well as a perturbation model to generate

mobility traces. The BerlinMod Traffic Generator [40] relies on the Berlin road network and on the

Secondo DBMS to generate data. The Minnesota Traffic Generator [101] provides a web interface

to the Brinkoff and BerlinMod traffic data generators. Finally, the Hermoupolis generator [108]

uses meaningful semantic data, such as homes and workplaces, to make the generated data more

25

realistic and similar to real human mobility traces. These data generators were devised for use cases

characterized by batch processing requirements. They first generate a large dataset, which is then

used to benchmark a moving object database. Our use case requires large volumes of mobility data

to load test the scalability of our middleware. In fact, this data is too large to be pre-generated

and must be produced in near real-time. Consequently, we devised a data generator that mocks the

behavior of a large fleet of moving entities in near real-time.

2.3.2 Real-time Generation

Our real-time data generator produces synthetic mobility traces, which are distinct from each other

and stick to an existing road network. To do so, the underlying generation model assumes that

each moving entity performs a round trip that passes by several locations randomly picked in a

given range on a map. When the round trip of a moving entity ends, the same round trip is simply

started again. To infer the location a moving entity at any given time during a round trip, we

rely on an open-source routing library called GraphHopper6. GraphHopper uses a variant of the

Dijkstra algorithm in conjunction with a road network extracted from the OpenStreetMap7 dataset

to calculate routes and durations between locations. In our case, we use the duration of a route to

infer the average speed of a moving entity between two locations of a round trip. In addition, the

segments composing the route are used to derive the position of the moving entity at any given time.

Finally, since the accuracy of GPS trackers varies and mobility traces never match perfectly to an

existing road network, we add some Gaussian noise to the generated traces.

2.3.3 Load Testing

To load test our middleware, we must be able to simulate many concurrent moving entities. The

Scala8 programming language and the actor model implemented in the Akka9 suit this requirement

perfectly. In terms of implementation, each moving entity corresponds to an actor whose state

contains a roundtrip and a position. The generator can be configured with several parameters, such

as the number of moving entities, the road network used to produce the data, or the average rate at

which moving entities are reporting their locations. Locations are reported by sending publication

updates and subscription updates directly to the middleware using a protocol we built using GRPC10.
6https://www.graphhopper.com/
7https://www.openstreetmap.org
8http://www.scala-lang.org
9http://www.akka.io

10http://www.grpc.io

26

https://www.graphhopper.com/
https://www.openstreetmap.org
http://www.scala-lang.org
http://www.akka.io
http://www.grpc.io

In future releases, we might include additional drivers that could be used to test other systems

characterized by the same requirements.

2.4 Demonstration

In this section, we highlight some key characteristics of the interactions proposed to the attendants

of this demonstration. Through these interactions, our main goal is to show the scalability of the

middleware architecture we described earlier.

2.4.1 Cluster Configuration

The attendant interacts with a small cluster made of 10 virtual machines responsible for computing

matches between publications and subscriptions. In this cluster, each virtual machine is located

on a different host and equipped with two vCPU and 4 GB of RAM. The middleware is deployed

using Kubernetes11 and Docker12. Different traffic data generation scenarios are launched with the

same tools in the same cluster to demonstrate the scalability of the middleware. For example, with

this cluster configuration, our middleware can process up to 80,000 location updates per second for

100,000 moving publications and 100,000 moving subscriptions, producing up to 25,000 matches

per second. Interestingly, despite the number of network hops introduced by the architecture, the

average end-to-end latency remains below 50 milliseconds.
11https://kubernetes.io
12https://www.docker.com

27

https://kubernetes.io
https://www.docker.com

2.4.2 Cluster Monitoring

Figure 2.3: Cluster Monitoring

As illustrated in Figure 2.3, the middleware is monitored with StatsD13, Graphite14, and Graphana15.

The attendant interacts with a live dashboard and can obtain real-time insight on the status of the

middleware. The displayed metrics include the throughput at which publications and subscriptions

are updating their locations, the throughput in terms of matches between publications and subscrip-

tion and the status of each individual node participating in the computation of matches in terms of

load average and memory usage.
13https://github.com/etsy/statsd
14https://graphiteapp.org
15http://grafana.org

28

https://github.com/etsy/statsd
https://graphiteapp.org
http://grafana.org

2.4.3 End-User Interactions

Figure 2.4: Moving Subscription and Synthetic Publications

As illustrated in Figure 2.4, an attendant can interact with the system with a web browser. Here, the

large gray circle corresponds to a subscription that moves as the user navigates the map. The small

red circles correspond to the set of moving publications located in the range of the subscription. The

publication updates that match the subscription are transmitted to the browser in real time due to

the websocket protocol. In this demonstration, the publications update their location every second

so the map is animated.

2.5 Conclusion & Future Work

The middleware for location-based publish and subscribe presented in this demonstration paper

achieves horizontal scalability due to a multi-step routing mechanism that relies on consistent hash-

ing and range partitioning. The new traffic data generator we propose can be used to generate large

amounts of real-time data to perform load and scalability tests on location-based services. As of

today, it is not clear how such a middleware can recover from failure or scale in and out on demand.

Consequently, our future work will focus on investigating these issues.

29

Chapter 3

A Horizontally Scalable and Reliable
Architecture for Location-Based
Publish-Subscribe

Bertil Chapuis, Benoı̂t Garbinato, and Lucas Mourot. A horizontally scalable and reliable archi-

tecture for location-based publish-subscribe. In 36th Symposium on Reliable Distributed Systems

(SRDS), pages 74–83. IEEE, 2017

Abstract

With billions of connected users and objects, location-based services face a massive scalability chal-

lenge. We propose a horizontally-scalable and reliable location-based publish/subscribe architecture

that can be deployed on a cluster made of commodity hardware. As many modern location-based

publish/subscribe systems, our architecture supports moving publishers, as well as moving sub-

scribers. When a publication moves in the range of a subscription, the owner of this subscription is

instantly notified via a server-initiated event, usually in the form of a push notification. To achieve

this, most existing solutions rely on classic indexing data structures, such as R-trees, and they strug-

gle at scaling beyond the scope of a single computing unit. Our architecture introduces a multi-step

routing mechanism that, to achieve horizontal scalability, efficiently combines range partitioning,

consistent hashing and a min-wise hashing agreement. In case of node failure, an active replica-

tion strategy ensures a reliable delivery of publication throughout the multistep routing mechanism.

From an algorithmic perspective, we show that the number of messages required to compute a match

30

is optimal in the execution model we consider and that the number of routing steps is constant. Us-

ing experimental results, we show that our method achieves high throughput, low latency and scales

horizontally. For example, with a cluster made of 200 nodes, our architecture can process up to

190’000 location updates per second for a fleet of nearly 1’900’000 moving entities, producing

more than 130’000 matches per second.

3.1 Introduction

Today, moving objects and moving users produce massive amounts of geo-located data. For exam-

ple, it is now common for cellular network operators and data analytics companies to collect up to

several millions of geographical data points per seconds. Furthermore, this trend is not likely to stop:

according to Gartner1 and IDC,2 there will be between 25 to 30 billion connected objects by 2020.

The emergence of this ecosystem of connected objects, known as the Internet of Things (IoT), opens

new opportunities, but also comes with new challenges in terms of development and deployment.

3.1.1 Location-Based Publish-Subscribe

Here the location-based publish-subscribe paradigm is of particular interest for developing mobile

applications that want to take advantage of the IoT ecosystem. With this communication paradigm,

connected objects are able to issue publications and subscriptions that are geographically scoped

and that move with them. The scope of a publication or a subscription is known as its space. A

match occurs between a given publication and a given subscription if both a content criterion and

a context criterion are met simultaneously. The content criterion expresses a semantic relationship

between the publication and the subscription, as captured by traditional publish-subscribe systems

such as the Java Messaging Service API.3 The context criterion then expresses some proximity

condition between the publication space and subscription space, hence the term location-based or

sometimes location-aware publish-subscribe [43, 93].

The location-based publish-subscribe paradigm is of great interest for any mobile application

that requires a precise and up-to-date knowledge of the context of its users. Therefore, it could be

used to improve user experience in various domains including social networking, transportation,

video game, and augmented reality. Although this communication paradigm offers great expres-

siveness and flexibility, scaling its implementation to billions of objects is far from trivial. As of
1http://www.gartner.com/newsroom/id/3165317
2https://www.idc.com/getdoc.jsp?containerId=US40755816
3https://jcp.org/en/jsr/detail?id=368

31

http://www.gartner.com/newsroom/id/3165317
https://www.idc.com/getdoc.jsp?containerId=US40755816
https://jcp.org/en/jsr/detail?id=368

today, location-based publish/subscribe solutions described in the literature have addressed the scal-

ability problem vertically, i.e., with a centralized computing unit responsible for the full workload.

Obviously, the vertical scalability approach can only work up to a certain load, that the exponential

growth of the IoT ecosystem can easily exceed.

3.1.2 Achieving Horizontal Scalability

The traditional centralized spatial indexing approaches mentioned above aim at taking advantage of

high stability in geographical locality (because most objects, such as buildings, shops, landmarks,

etc., are not moving), via tree-like data structures. Indeed, such approaches are known to be efficient

in contexts where the majority of indexed objects fit on a single machine and are static, i.e., when

reads on the index greatly outnumber writes. Keeping the underlying tree-based data structures

balanced can be very costly in the presence of numerous writes. Therefore, in order to support a

large number of moving objects we need to scale out.

Yet to our knowledge, while many efficient spatial data-structures have been proposed to ac-

celerate the computation of matches between moving publishers and moving subscribers, such as

variants of R-trees for instance, the problem has not yet been addressed in terms of horizontal

scalability, i.e, with many distributed computing units, each one being responsible for only a part

of the workload. Here, we consider the problem of horizontally scaling the location-based pub-

lish/subscribe communication paradigm. Our starting point consists in fragmenting locality using

the notions of range partitioning, in conjunction with consistent-hashing, in order to dynamically

distribute the computation of the matches.

3.1.3 Contributions & Roadmap

Our key contributions are organized as follows.

1. In Section 3.2, we describe a model for reasoning about the location-based publish/subscribe

paradigm in a distributed context and we introduce the problem of scaling out systems sup-

porting this paradigm.

2. In Section 3.3, we introduce a scalable and reliable location-based publish/subscribe archi-

tecture. This architecture scales horizontally due to the counter-intuitive idea that selectively

fragmenting locality with a combination of range partitioning, consistent hashing and an a

32

priori min-wise hashing agreement can help us compute matches efficiently. In addition, an

active replication strategy makes this distributed architecture tolerant to node failures.

3. In Sections 3.4 and 3.5, we evaluate our solution both theoretically and experimentally. For

the latter, we implement and evaluate our protocol on a real cluster setup and highlight its

performances in terms of horizontal scalability, throughput and latency.

We then conclude this paper by discussing related work in Section 3.6 and future research op-

portunities in Section 3.7.

3.2 Scaling location-based publish-subscribe

We consider a distributed system composed of mobile client nodes, that represent computing devices

moving in the field, and of fixed server nodes that represent computing resources in some data center.

3.2.1 Client-Side Model

On the client side, mobile nodes can issue long-lived geographically-scoped publications and sub-

scriptions that move with their issuers. Formally, a publication pub is defined as tuple pub =

(id,Z,A), where id 2N uniquely identifies pub, Z 2Z denotes the geographical zone4 where pub is

active and set A = {a1,a2, . . . ,a|A|} denotes a collection of attributes of the form a = (name,value).

In other words, A defines the content of pub, whereas Z defines its context. Similarly, a subscription

sub is defined as tuple sub = (id,Z,A, issuer), where issuer uniquely identifies the mobile client

node that issued sub. As publications and subscriptions move with their issuers, the geographical

boundaries where they are active are also moving. Therefore, given a moving subscription sub and

a moving publication pub, we say that a match occurs when the following two conditions are met:

sub.Z\ pub.Z 6= ? and sub.A✓ pub.A. When such a match occurs, the mobile node that issued sub

is notified by asynchronously receiving a tuple (pub,sub). It is worth noting that every time a pub-

lication moves within the range of a matching subscription, the subscription’s issuer will receive an

update.
4Here Z denotes the set of all zones definable on the earth surface.

33

pub1

sub1

pub2

Figure 3.1: Example of location match

Intuitively, the first condition captures the fact that the geographical zones of pub and sub over-

lap; this is known as a context match or a location match. Figure 3.1 depicts two publications pub1

and pub2 and a subscription sub1 that only matches with pub2 in terms of location. The second con-

dition captures the fact that publication pub contains at least all the attributes of subscription sub;

this is known as a content match.

The above client-side model is similar to the one used in [93]. There exists of course many

alternative ways to define the notion of content match, but this is out of scope here: in this paper,

we focus exclusively on location matches. Similarly, we could define the notion of location match

by using an alternative proximity criterion but, as we will see, this would not affect the generality

of our approach.

3.2.2 Server-Side Model

On the server side, fixed server nodes consist in inter-connected virtual or physical nodes running

on commodity hardware and organised as a cluster in some data centers. In this paper, we consider a

set of distributed processes P = {p1, p2, · · · , pn} running on server nodes. Furthermore, we assume

that processes in P know each other and communicate by reliably exchanging uniquely identified

messages.

34

3.2.3 Scaling horizontally

Using the above client-side and server-side models, we can now specify the horizontal scalability

problem. We begin by defining how the two models work together, i.e., how nodes on one side

communicate with nodes on the other side.

When a client-side mobile node wants to issue a new publication or a new subscription, or when

it moves and hence needs to update the geographical zones associated with its existing publications

and subscriptions, it sends messages to the cluster. The latter is responsible for computing the

matches that are then sent back to the mobiles nodes that issued the subscriptions concerned by

those matches. It is worth noting that mobile nodes never communicate directly with each others

but always do so via cluster nodes.

Here, we address the problem of distributing the computation of matches among cluster nodes in

a way that enables the overall system to scale horizontally. That is, we want to answer the following

question: How can we organize the work of server-side nodes so that by simply adding new nodes

to the cluster, we can manage a growing number of moving publications and subscriptions, while

maintaining low latency in term of match computation and delivery?

3.3 A Horizontally Scalable and Reliable Architecture

In this section, we describe a horizontally scalable architecture that supports the location-based

publish and subscribe communication paradigm. In contrast to traditional centralized spatial data

structures that aim at taking advantage of geographical locality, our solution fragments locality by

using the notions of range partitioning, in conjunction with consistent-hashing, in order to dynam-

ically distribute the computation of matches across sets of processes.

3.3.1 Range Partitioning

Map services such as Google Maps5 or Mapbox6 typically rely on a grid layout that divides the

world into a set of tiles. In this paper, we use tiles to create range partitions along two dimen-

sions. We then use these partitions to distribute the computation of context matches between pub-

lications and subscriptions among processes running in our cluster. For this, we introduce set

G = {t1, t2, . . . , t|G|}: it denotes a grid layout on the earth surface consisting in a set of uniquely

5https://maps.google.com
6https://www.mapbox.com

35

https://maps.google.com
https://www.mapbox.com

identified tiles. In addition, we introduce function tiles : Z ! 2G that maps a geographical zone

Z 2Z to its overlapping set of tiles TZ ✓ G, i.e., we have TZ = {t 2 G | t \Z 6= ?}.

Figure 3.2 illustrates how the tiles function is used to determine the sets of tiles overlapping with

the publications and subscription depicted in Figure 3.1. Obviously, rectangle-based grids rely on a

map projection, which is necessary for mapping coordinates on a sphere to coordinates on a plane.

Such map projections are known to introduce spatial distortions that result in the tiles being not

uniform in terms of shape and size. However, as in our context tiles are used as units of distribution

and parallelism, these distortions have virtually no effect on performance.

t1 t2 t3

t4 t5 t6

tiles(sub1.Z) = {t2, t3, t5, t6}

tiles(pub2.Z) = {t1, t4}

tiles(pub1.Z) = {t3, t6}

pub2

sub1

pub1
tiles(pub1.Z ⋂ sub1.Z) = {t3, t6}

Hmin(tiles(pub1.Z ⋂ sub1.Z)) = t3

Figure 3.2: Example of using the tiles function

3.3.2 Consistent Hashing

Distributed hash tables typically rely on a family of functions that offers consistent hashing in

order to partition data items across a cluster of processes and to scale horizontally. In other words,

the unique identifier of each data item is passed to a consistent hashing function and the resulting

hash value is then used to find the process responsible for handling that particular data item.

36

p1

p2

p3

p4

p5

p6

p7

p8

F(i1.id) = p3

If hashing the identifier of item i1
gives a placement value in the range
of process p2 and p3, then p3 is
responsible for item i1.

� = {p1, p2, p3, p4, p5, p6, p7, p8}

Figure 3.3: Distributing data items across processes in a ring

Formally, consistent hashing can be expressed as function F : I!P that distributes a set of data

items I = {i1, i2, . . . , i|I|} across a set of processes P. As illustrated in Figure 3.3, it is common to

think about consistent hashing as a ring in which the largest possible hash value convolutes to the

smallest possible hash value [38]. Each process is assigned a fixed position on the ring, for example

by hashing the unique identifier of that process. In order to find the process responsible for handing

a given item, the identifier of that item is hashed, then the first process on the ring with a placement

value greater than the resulting hash value is selected. Here the monotonicity of F is particularly

interesting as it ensures that when processes are added or deleted, the distribution of items across

existing processes does not change [78]. However, as illustrated in Figure 3.3, positioning processes

by hash values can lead to a non-uniform distribution of the load on the ring. As a consequence,

we rely on a notion similar to the ”virtual nodes” used by Dynamo [38]. When processes are added

to the system, each of them receives multiple positions in the ring, improving the uniformity of the

load distribution.

3.3.3 Min-wise Hashing Agreement

Our architecture relies on the tiling of the earth’s surface and on a set of consistent hashing func-

tions to partition and distribute the load of computing matches between publications and subscrip-

tions. That is, the subdivision of the earth’s surface into tiles is used as a range partitioning criteria,

whereas consistent hashing functions are responsible for distributing the load by routing messages

to processes. As depicted in Figure 3.2, a problem occurs when the boundaries of a publication

or a subscription overlap with several tiles. In such a case, the same match will be computed on

37

several tiles, here t3 and t6, resulting in duplicated messages. A straightforward solution would be

to address this issue with an a posteriori agreement, i.e, an centralised process for identifying and

eliminating duplicates. However, such a solution would have several disadvantages: First, the de-

tection of duplicates by using a list or a set in an unbounded message stream is not practical due

to memory constraints; second, when publications and subscriptions overlap with many tiles, the

amount of duplicated messages transmitted in the cluster might result in network congestion.

To avoid these problems completely, we present an efficient a priori min-wise hashing agreement

that does not require a centralized coordination. As illustrated in Figure 3.2, both tiles t3 and t6
identify the intersection between pub1 and sub1 and trigger a match. Hence, by computing the

set tiles(pub1.Z \ sub1.Z), each tile is able to infer which other tile will compute the exact same

match. Given this fact, a convention can be used to determine which tile is responsible for sending

the match to the end user. Let H be a hash function that maps tiles to distinct integers. Given

any set of tiles T , we define Hmin(T) to be the tile t 2 T with the minimum hash value. On this

basis, the a priori min-wise hashing agreement can be expressed with one condition: given any tile

overlapped by both pub1 and sub1, a tile transmits the match to the end user only if the condition

tile = Hmin(tiles(pub1.Z\ sub1.Z)) is satisfied.

3.3.4 Detailed Architecture and Algorithms

In this section, we provide a more detailed description of the internals of our architecture.

Process roles

When participating in match computation, processes can have one of the three roles described here-

after. When new nodes are added to the cluster to scale out, one or more processes of each role can

be started.

1. The Frontend role characterizes the set of processes PF ✓ P responsible for handling and

routing publication and subscription requests in the cluster.

2. The State Manager role characterizes the set of processes PS ✓ P responsible for tracking

and managing the state of publications and subscription in the cluster,

3. The Tile Manager role characterizes the set of processes PT ✓ P responsible for computing

matches between publications and subscriptions that overlap with a specific set of tiles.

38

Match Triggering Graph

Publisher

Subscriber

State
Manager

State
Manager

Tile
Manager

Frontend

Frontend
➀ ➁

➂

➃

➄

➅

➆

➇

FS(pub.id)

FS(sub.id)

FT (tile.id)

pub

sub
FT (tile.id)

match

tile = Hmin(tiles(pub1.Z \ sub1.Z))

Figure 3.4: Overview of a Match Triggering Graph

Figure 3.4 gives an overview of how the aforementioned concepts all play together. We use the term

Match Triggering Graph when referring to the graph that contains all the paths of the messages

that lead to a match. In other words, a Match Triggering Graph corresponds to the paths that

link a State Manager process responsible for a particular publication, a State Manager process

responsible for an overlapping subscription and the Tile Manager process that computes a match

for this publication/subscription pair.

Message routing

Messages are routed across processes by using the two distinct consistent hashing functions:

1. Function FS : N! PS routes messages to State Manager processes by hashing publications

and subscription identifiers id 2 N.

2. Function FT : N!PT routes messages to Tile Manager processes by hashing tile identifiers

tile.id 2 N.

Figure 3.5 illustrates in more details how publications, subscriptions and matches are routed in

the cluster. In Figure 3.5a, the publication is first routed from a Frontend process to a State Manager

process. The State Manager is responsible for identifying and notifying the tiles that overlap the

39

Publisher

State
Manager

Tile
Manager

Tile
Manager

Frontend

➀ ➁

➂

➂

(a) Publication routing

Subscriber

State
Manager

Frontend

Tile
Manager

Tile
Manager

➃

➄

➅

➅

(b) Subscription routing

Subscriber

Tile
Manager

Tile
Manager

Frontend

➇

➆ tile = Hmin(tiles(pub1.Z \ sub1.Z))

tile 6= Hmin(tiles(pub1.Z \ sub1.Z))➆

(c) Match routing

Figure 3.5: Distributed routing based on consistent hashing

40

geographical zone of a publication. Why is this intermediary step between Frontend processes and

Tile Manager processes necessary? When the location of a publication is updated, it might enter

some tiles and leave some others. As a consequence, it is necessary to have a process responsible

for tracking the state of a publication in the cluster and notifying Tile Manager processes in a con-

sistent manner. In Figure 3.5b, a similar routing scenario is depicted for subscriptions. As depicted

in Figure 3.5c, the same match can be computed by several Tile Manager processes. However, only

one of these process satisfies the min-wise hashing condition tile = Hmin(tiles(pub1.Z \ sub1.Z))

and transmits the match to the subscriber. As the computation of this condition is very cheap, it can

be verified by every Tile Manager process and, as a result, the architecture requires no intermediary

step for eliminating duplicated matches.

Frontend algorithm

Algorithm 1 Frontend
upon event hiniti

connections ?

upon event haddPub|pubi
send haddPub|pubi to FS(pub.id)

upon event hdeletePub|pubi
send hdeletePub|pubi to FS(pub.id)

upon event haddSub|subi
sub.sender sel f
connections connections[{(sub.id,connection)}
send haddSub|subi to FS(sub.id)

upon event hdeleteSub|subi
connections {(s,c) 2 connections|s 6= sub.id}
send hdeleteSub|subi to FS(sub.id)

upon event hmatch|pub,subi
conn c|(s,c) 2 connections|s = sub.id
send hmatch|pub,subi to connection

41

A client is not assumed to know which process of the cluster is responsible for managing the state

of a particular publication or subscription. Furthermore, in practice, an implementation of the mid-

dleware would typically communicate with subscribers through TCP keep-alive connections. As a

consequence, the Frontend process is typically used behind a load balancer to parse the protocol-

specific requests emitted by clients, to route them to the correct server side State Manager processes

using consistent hashing, and to forward the computed matches back to the subscribers in the pro-

tocol specific format. A hypothetic Frontend process can receive four kinds of protocol-specific

events from the client:

1. haddPub|pubimessages are used to add or update the state of a publication pub in the cluster;

2. hdeletePub|pubi messages are used to delete the state of a publication pub from the cluster;

3. haddSub|subimessages are used to add or update the state of a subscription sub in the cluster;

4. hdeleteSub|subi messages are used to delete the state of a subscription sub from the cluster.

In Algorithm 1, the sel f variable corresponds to the f rontend process itself and the connection

variable corresponds to a client connection, typically a TCP connection.

42

State Manager algorithm

Algorithm 2 State Manager
upon event hiniti

pubs ?
subs ?

upon event haddPub|pubi
prev p 2 pubs such that p.id = pub.id
for all tile 2 tiles(prev.Z)\ tiles(pub.Z) do

send hdeletePub|tile, pubi to FT (tile.id)

for all tile 2 tiles(pub.Z) do
send haddPub|tile, pubi to FT (tile.id)

pubs {p 2 pubs|p.id 6= pub.id}[{pub}

upon event hdeletePub|pubi
prev p 2 pubs such that p.id = pub.id
for all tile 2 tiles(prev.Z) do

send hdeletePub|tile, pubi to FT (tile.id)

pubs {p 2 pubs|p.id 6= pub.id}

upon event haddSub|subi
prev s 2 subs such that s.id = sub.id
for all tile 2 tiles(prev.Z)\ tiles(sub.Z) do

send hdeleteSub|tile,subi to FT (tile.id)

for all tile 2 tiles(sub.Z) do
send haddSub|tile,subi to FT (tile.id)

subs {s 2 subs|s.id 6= sub.id}[{sub}

upon event hdeleteSub|subi
prev s 2 subs such that id = sub.id
for all tile 2 tiles(prev.Z) do

send hdeleteSub|tile,subi to FT (tile.id)

subs {s 2 subs|s.id 6= sub.id}

43

A State Manager process is responsible for managing the state of a subset of publications and

subscriptions active in the cluster. It receives four types of messages from Frontend processes:

1. haddPub|pubi messages are used to add or update the state of a publication pub to the state

manager;

2. hdeletePub|pubi messages are used to delete the state of a publication pub from the state

manager;

3. haddSub|subi messages are used to add or update the state of a subscription sub to the state

manager;

4. hdeleteSub|subi messages are used to delete the state of a subscription sub from the state

manager.

In addition, a State Manager process sends four kinds of message to Tile Manager processes:

1. haddTilePub|tile, pubi messages are used to add or update the state of a publication pub to

the Tile Manager process responsible for tile;

2. hdeleteTilePub|tile, pubimessages are used to delete the state state of a publication pub from

the Tile Manager process responsible for tile;

3. haddTileSub|tile,subi messages are used to add or update the state of a subscription sub to

the Tile Manager process responsible for tile;

4. hdeleteTileSub|tile,subimessages are used to delete the state state of a subscription sub from

the Tile Manager process responsible for tile.

Algorithm 2 describes the internals of a State Manager processes. When a user registers a new

publication or a new subscription, the Tile Manager processes that overlap its geographical zone

must be notified. In a similar way, when a user updates the geographical zone of a publication or a

subscription, some previously notified Tile Manager processes must be left and new ones be notified.

As we want these actions to be transparent to the end user, a State Manager process records the state

of publications and subscriptions and sends the necessary maintenance messages across the cluster.

When a State Manager process receives a message regarding a publication or a subscription, it uses

consistent hashing on tile identifiers tile.id in order to notify the affected Tile Manager processes.

Each State Manager process is responsible for the states of the publications and subscriptions stored

in the pubs and in the subs sets. As these sets only contain the latest publication and subscription

44

states, their identifiers pub.id and sub.id are used to identify and eliminate older versions from the

sets. We also assume that tiles(prev.Z) returns an empty set when prev is null.

Tile Manager algorithm

Algorithm 3 Tile Manager
upon event hiniti

pubs ?
subs ?

upon event haddPub|tile, pubi
for all s 2 subs|s.Z\ pub.Z 6= ? do

if tile = Hmin(tiles(pub.Z\ s.Z)) then
send hmatch|pub,si to s.sender

pubs {(tile, pub)}[
{(t, p) 2 pubs|¬(t = tile^ p.id = pub.id)}

upon event hdeletePub|tile, pubi
pubs {(t, p) 2 pubs|¬(t = tile^ p.id = pub.id)}

upon event haddSub|tile,subi
for all p 2 pubs : sub.Z\ p 6= ? do

if tile = Hmin(tiles(p.Z\ sub.Z)) then
send hmatch|p,subi to sub.sender

subs {(tile,sub)}[
{(t,s) 2 subs|¬(t = tile^ s.id = sub.id)}

upon event hdeleteSub|tile,subi
subs {(t,s) 2 subs|¬(t = tile^ s.id = sub.id)}

A Tile Manager process is responsible for computing all the matches between publications and

subscriptions whose geographical zones overlap with the zone covered by a specific tile. A Tile

Manager process receives four kind of messages from State Manager processes:

1. haddTilePub|tile, pubi messages are used to add or update the state of a publication pub in

the Tile Manager process responsible for tile;

45

2. hdeleteTilePub|tile, pubi messages are used to delete the state of a publication pub from the

Tile Manager process responsible for tile;

3. haddTileSub|tile,subi messages are used to add or update the state of a subscription sub in

the Tile Manager process responsible for tile;

4. hdeleteTileSub|tile,subi message are used to delete the state of a subscription sub from the

Tile Manager process responsible for tile.

In addition, Tile Manager processes send match messages in the form of hmatch|pub,subi to

the Frontend process attached to the end-user connection of the subscriber. Algorithm 3 shows how

collections of publication and subscription states are maintained in Tile Manager processes. When

a publication state is added or updated, matches are sent to overlapping subscriptions. When a sub-

scription state is added or updated, matches containing the overlapping publications are forwarded

to the match filter before reaching the subscription.

3.3.5 Fault Tolerance and Reliability

In order to make our architecture reliable and fault tolerant, we adopt an active replication strategy.

In other words, each message is processed by all the replicas and, given a replication factor r, the

system should still be able to compute and deliver all the matches when there are at most r� 1

failing processes. The general idea behind our replication strategy consists into fully replicating

the Match Triggering Graph. In order to replicate these graphs, we modify our consistent hashing

function so that, instead of returning a single process, it returns a list of replicas that contains the r

consecutive processes of the hash ring located on distinct physical nodes.

46

Publisher

Subscriber

Frontend

Frontend
➀

➁

➂

➃

➄

➆

➇

pub

sub

match

State Manager
Replicas (RP)

Tile Manager
Replicas (RT)

State Manager
Replicas (RS)

match

FS(sub.id)

FS(pub.id)

FT (tile.id)

FT (tile.id)

➅

Figure 3.6: Replication of a Match Triggering Graphs

Figure 3.6 illustrates in more details this replication mechanism. Here, we first notice a different

behaviour in the way Frontend processes and State Manager processes route messages to replicas.

In order to duplicate the routing graph, Frontend processes contact all the State Manager replicas of

the lists RP and RS. In order to limit the number of messages, a State Manager process from the list

RP only sends one messages to a Tile Manager process of the list RT . The position of State Manager

process in the list RS is used to select the corresponding Tile Manager process in the list RT . As

a result, the number of messages propagated in the cluster remains proportional to the replication

factor.

Independence of failure

The reliability of our architecture relies on the assumption that n node failures do not compromise

more than n Match Triggering Graphs. However, because of the multiple routing steps involved and

the abstraction of virtual nodes typically used in data centers, the lists of nodes associated to the

replicated processes can overlap. As a result, several processes along the routing graphs might be

located on the same physical node, whose failure might break several graphs and compromise the

overall reliability of the system.

47

State Manager
Replicas (RP)

Tile Manager
Replicas (RT)

State Manager
Replicas (RS)

replica1

replica2

replica3

node2

node1

node3

node3

node5

node1

node4

node3

node2

Figure 3.7: Non-Independence of failure in the Match Triggering Graphs

Figure 3.7 illustrates such a failure scenario. Here, if node3 fails, all the replicated routing

graphs break. A solution to this problem would be to ensure that the lists of physical nodes associ-

ated to the lists of replicas RP, RT and RS never overlap. However, enforcing this property requires

some sort of agreement.

State Manager
Replicas (RP)

Tile Manager
Replicas (RT)

State Manager
Replicas (RS)

replica1

replica2

replica3

node1

node2

node3

node4

node5

node6

node1

node2

node3

Figure 3.8: Ensuring independence of failure in the Match Triggering Graphs

Again, our approach consists in finding an a priori agreement that completely avoid the costs of

a distributed agreement or the disadvantages of a centralized solution. At the level of the consistent

hashing function, we cannot ensure that the selection of replicas throughout the routing steps will

result in non-overlapping lists of physical nodes. However, by creating replication groups in the

consistent hash ring, we can ensure that the lists of physical machines associated to the selected

48

replicas are either fully overlapping or not overlapping at all. In addition, if we order the lists

of replicas by the physical addresses of their hosts, we can guarantee that the overlapping lists will

always be aligned, i.e., the replicated processes located on the same machine will communicate with

each others. Figure 3.8 illustrates such a correct alignement. Here the physical nodes associated to

the lists RP, RT and RS are either non-overlapping or fully overlapping. In case of full overlapping,

the lists are ordered or aligned by using the physical addresses. As a result, the number of broken

routing graphs will never be greater than the number of failures, ensuring the reliability of the

system.

3.4 Theoretical Evaluation

In this section, we theoretically evaluate our distributed algorithm. Given a distributed algorithm,

two metrics are generally used to measure its performance: the number of messages required for the

termination of an operation and the number of communication steps required for its termination [62].

Regarding the first metric, the operation that has the potential to generate the greatest number

of messages in the cluster is the insertion or the update of a publication in the cluster. The number

of messages generated by the insertion or the update of a subscription will always be lower because

only one subscriber is concerned by the operation. In order to calculate the number of messages

required to terminate the insertion of a publication, we first introduce the variable t = |Tiles(pub.Z)|
that corresponds to the number of tiles affected by the operation. We also introduce the number of

matches m generated by the operation such that m = |{sub 2 subs|sub.Z \ pub.Z 6= ?}|. On this

basis, we can easily enumerate the number of messages generated by the insertion of a publication.

To inform the Frontend process, a first message is required by the client. A second message is sent

by the Frontend process to the State Manager process. Then, t messages are required to inform

the Tile Manager processes. As the Tile Manager processes are able to agree on which process

will send the match message to the Frontent process without communicating, m messages will be

generated. Finally, m messages (i.e., one message per matching subscriber) are required to forward

the matches from the Frontend processes to the end user. Hence, we end up with a worst case

scenario of 1 + 1 + t + m + m messages that correspond to a complexity of O(t + m) messages. As

a result, knowing that the worst case of a centralized architecture should be characterized by an

O(m) complexity, the overhead introduced by our distributed algorithm is optimal in the considered

execution model (presented in Section 3.2).

Regarding the second metric, the number of communication steps required for the termination

of the distributed algorithm is bounded to five in the worst case. Although at a first glance this

49

number might seem too high, we demonstrate in the next section that the latency introduced by

these steps remains very low, in the context of a data center.

3.5 Experimental Evaluation

In addition to provide a theoretical evaluation of our algorithms, we tested the scalability of our

architecture in the context of a large scale cluster setup. In this section, we describe the results we

obtained in terms of throughput, reliability, load, memory and latency.

3.5.1 Evaluation setup

Our implementation is written in Scala7 and relies on a distributed application framework called

Akka.8 This framework relies on the Actor Model as an abstraction for distribution, concurrency,

parallelism and communication. Therefore, each process described in the architecture corresponds

to an actor. We used a Kubernetes9 cluster hosted in Google Cloud10 to run our experiments. In

Kubernetes, Docker11 containers are used to accelerate the deployment of applications and a concept

named Daemon Set can be used to run a copy of an application on a collection of nodes in the

cluster. We used StatsD12 to collect and aggregate statistics across the cluster. We ran our prototype

on cluster configurations made of up to 200 virtual machines with two vCPU and 7.5GB of RAM.

3.5.2 Cluster settings

In order to verify that our architecture scales horizontally, we saturated various cluster configura-

tions with move operations. To do so, we created a client application that simulates a fleet of moving

entities (either publications or subscriptions) of size n. Moving entities have a circular range with

radius of 50 meters, a speed of 20km/h, and send move operations every 10 seconds. Each node

in the cluster run an instance of this application and the average CPU load of the node is used to

mitigate the amount of move operations generated. In other words, the client applications increase

the size of the fleet when the load of the nodes are below a minimal threshold. Inversely, the clients

decreases the size of the fleet when a maximal load threshold is reached. As a result, the number of
7https://github.com/scala/scala
8https://github.com/akka/akka
9https://github.com/kubernetes/kubernetes

10https://cloud.google.com
11https://github.com/docker/docker
12https://github.com/etsy/statsd

50

https://github.com/scala/scala
https://github.com/akka/akka
https://github.com/kubernetes/kubernetes
https://cloud.google.com
https://github.com/docker/docker
https://github.com/etsy/statsd

move operations is dynamically adjusted to the load that the cluster is able to sustain. The members

of the fleet respect a uniform density of 100 moving entities per square kilometres. A configuration

parameter k corresponds to the ratio of moving entities mapped to publications. Therefore, p = k⇤n

corresponds to the number of publications and s = (1�k)⇤n corresponds to the number of subscrip-

tions. In our configurations, the size of the tiles is fixed at a width of approximately 1222 meters.

Finally, the parameter r corresponds to the replication factor enforced by the cluster.

3.5.3 Horizontal scalability

Figure 3.9 highlights the scalability of our architecture for three distinct scenarios by varying the

k parameter. When k = 0.2, we have 20% of publications and 80% of subscriptions, which might

correspond to the need of a hailing applications. When k = 0.5, the balance between publications

and subscriptions is perfect, which might correspond to the radar of an autonomous fleet of vehicles.

When k = 0.8, we hypothetically address the need of an IoT application, where the data of many

sensors (publications) are aggregated by moving subscriptions. First, in the three cases, we notice

that the number of moves scales almost linearly with the number of nodes. It is interesting to

note that, with 200 nodes we were able to sustain the move operations generated by a fleet of

1’900’000 moving entities. Every second, such a load approximately corresponds to 190’000 move

operations and 130’000 matches. On a daily basis, this represents a load of more than 15 billion

move operations and 11 billion matches. Interestingly, an uneven distribution of publications and

subscriptions increases the number of move operations that the system is able to sustain. In fact,

as illustrated in Figure 3.9, such distribution tends to reduce the number of matches and releases

additional resources for handling move operations.

3.5.4 Reliability overhead

Figure 3.10 highlights the cost associated to reliability. As illustrated here, replicating the Match

Triggering Graph symmetrically decreases the number of number of move operations that the sys-

tem is able to sustain and the number of matches it is able to compute. Interestingly, doubling the

replication factor does not divide the throughput by two. This is probably due to the fact that the

graph is replicated from the frontend process and not from one end to the other. Finally, it is worth

noting that the system scales almost linearly for all the tested replication factors.

51

10 50 100 150 200

0
K

50
 K

10
0

K
15

0
K

20
0

K

Nodes

M
ov

es
 /

se
co

nd

k=0.2
k=0.5
k=0.8

10 50 100 150 200

0
K

20
 K

60
 K

10
0

K

Nodes

M
at

ch
es

 /
se

co
nd

k=0.2
k=0.5
k=0.8

Figure 3.9: Varying the ratio of publications and subscriptions (k)

52

10 50 100 150 200

0
K

50
 K

10
0

K
15

0
K

Nodes

M
ov

es
 /

se
co

nd

r=1
r=2
r=3

10 50 100 150 200

0
K

20
 K

60
 K

10
0

K

Nodes

M
at

ch
es

 /
se

co
nd

r=1
r=2
r=3

Figure 3.10: Varying the replication factor (r)

53

3.5.5 Load, memory and latency

Figure 3.11: Latency (milliseconds) on a 10 nodes cluster

Given a fixed cluster size of 10 nodes, Figure 3.11 shows the latency measured in milliseconds

over several hours. Here, latency refers to the time taken by a publication to reach a matching sub-

scription. To measure this kind of end-to-end latency, we collocated a subscription and a matching

publications on the same nodes and periodically calculated latency by subtracting the sending time

of the publication to its reception time. For this experiment, we started virtual machines in two data

centers and guaranteed that the virtual machines were located on different hosts. As highlighted

here, 99% of the publications were delivered in less than 50 milliseconds and, in the worst case,

latency always remained below 100 milliseconds. Interestingly, we noticed that the latency peaks

were often linked to stop-the-world garbage collection tasks performed by Java.

10 50 100 150 200

4.
2

4.
4

4.
6

4.
8

5.
0

Nodes

Lo
ad

 a
ve

ra
ge

10 50 100 150 200

20
0

24
0

28
0

Nodes

M
em

or
y

(M
B)

10 50 100 150 200

0
10

00
20

00

Nodes

La
te

nc
y

(m
s)

max
99th
90th

Figure 3.12: Load average, memory and latency

54

Average CPU load, memory usage and latency are a key metrics that have to remain stable as

the size of the cluster grows. As illustrated in Figures 3.12, our solution ensures that these metrics

remain stable regardless of the scale. In terms of latency, the max value corresponds to the sole

maximal latency measure recorded for a given configuration. Here, the 90th and 99th percentile

show that most operations are characterized by a very low latency. Therefore, we conclude that the

max value is the result of unpredictable garbage collection tasks and not of a greater cluster size.

3.6 Related Work

3.6.1 Location-Based Publish and Subscribe

To our knowledge, despite the fact that some studies [32, 36, 43, 71] approach location-based pub-

lish and subscribe from a distributed-system perspective, none of them focus on horizontal scalabil-

ity. Interestingly, by addressing scalability in a vertical manner, a huge body of literature recently

focused on improving the computation of spatial matches on a single node. For example, Cugola et

al. use GPU in order to improve the performance of location-based publish and subscribe [37]. In

[127], Yylomenos et al. address the problem of caching data in a publish and subscribe architecture

that targets mobile and pervasive devices. In [93] and [131], Guoliang et al. propose an efficient

R-Tree based index structure, as well as filtering and pruning algorithms, in order to accelerate the

computation of spatial matches. In [74], Hu et al. propose another variant of the R-Tree, the RI-

Tree, to solve the same problem. In [125], Wang et al. propose an alternative index structure, the

AP-Tree; it organises records using keywords and spatial data. More recently, in [63], L. Guo et

al. described a location-based publish and subscribe system that relies on the concept of safe re-

gion in order to reduce communication overhead between a node responsible for the computation of

matches and a set of clients. The solution we propose differs from prior work in several ways. For

example, in contrast to locality-preserving data structures, such as R-Trees, our solution is some-

how counterintuitive because it fragments geographical locality by using consistent hashing in order

to improve performance. More importantly, our solution completely departs from approaches that

rely on a single node and addresses the problem of horizontally scaling the computation of matches

within a cluster.

3.6.2 Continuous KNN Queries

Another field of research closely related to location-based publish and subscribe is the processing

of continuous top-k nearest-neighbours queries (KNN). Given a query characterised by a moving

55

location and some keywords, the problem consists in continuously updating a set of objects that

satisfies the specified constraints in terms of context and content. In [4], Bamba et al. define the

notions of spatial alarms and safe-region computation: it relies on the assumption that moving

queries are performed on static datasets. Under these conditions, it becomes possible to identify

areas in which no matching event will occur. Knowing this, the application can simply disconnect

when entering a safe-region and reconnect when leaving it, thus greatly reducing network traffic

and communication costs. In [66], Hasan et al. present an efficient construction technique for safe-

regions, based on range nearest-neighbor queries. In [126], Wu et al. propose a safe-region detection

mechanism that include text relevancy. In [76], Huang et al. introduce an alternative representation

for safe-region and improve the performance of safe-region construction. The assumption that a

part of the data remains static is unfortunately too strong in our case, since our solution specifically

supports moving publications and moving subscriptions.

3.6.3 Consistent Hashing

Web services can be subject to what is called the hot spot phenomenon: A web resource can ex-

perience a sudden and great popularity, and a single server cannot handle the incoming traffic. In

this context, caching and load balancing strategies become vital. In [78], Krager et al. introduced

a family of hash functions called consistent hashing: it can be used to relieve hot spots from the

web. In [79], the same authors also show how consistent hashing can be used in order to create

distributed caches. Among the four original properties described in these papers, two had a huge

impact on distributed database communities. Balance and monotone hash functions give good guar-

antees on the location and the distribution of cached items. These properties are now at the root of

most distributed hash tables; and some popular databases such as Dynamo also use them in order

to spread and locate records in a distributed system [38]. Another algorithm, called Rendez-vous

Hashing [122], developed at the same period achieves the same kind of distributed agreement and

can be used as a substitute. Recently, some topic-based publish/subscribe systems use consistent

hashing in order to scale horizontally [133, 116, 59]. Contrary to overlapping spatial contexts, top-

ics are strictly isolated from each other. As a result, the architecture we propose for location-based

publish/subscribe significantly differs from the usual application of consistent hashing.

3.7 Conclusion and future work

We have highlighted the limitations of existing location-based published and subscribe systems

in terms of horizontal scalability and have introduced a model adapted to the context of a dis-

56

tributed system. On this basis, we have described and implemented a novel architecture based on

the assumption that fragmenting locality by using consistent hashing could help compute matches

efficiently in a cluster. Furthermore, we have demonstrated that the number of additional communi-

cation steps introduced by our protocol, in order to support moving publications and subscriptions,

does not compromise horizontal scalability. In addition, we have shown that reliability and fault

tolerance can be achieved with a number of messages proportional to the replication factor. Finally,

we have showed with a prototype implementation and an experimental evaluation that our architec-

ture can be deployed on commodity hardware and achieve a very high throughput and preserve a

low latency.

Although the proposed distributed architecture yields very promising results, it also also raises

a certain number of questions. First, the grid we have introduced in this paper is homogenous,

whereas human activity is not. Vast areas, such as oceans are mostly empty and a grid that takes

this fact into account might produce interesting results. Consequently, we plan to explore different

grid topologies that account for the density of cities and the emptiness of remote areas. Second, the

related work regarding safe-region detection highlighted the communication cost linked to continu-

ous transmission of matches. Although safe-regions are based on the assumption that a part of the

data remains static, Guo et al. demonstrate in [63] that it can be adapted to moving publications

and subscriptions in the context of a single node. Therefore, we plan to investigate the possibility

of detecting and constructing safe-regions in the context of a distributed system.

57

Part II

Past: Indexing Trajectories

58

Chapter 4

An Efficient Type-agnostic Approach for
Finding Sub-sequences in Data

Best Paper Award. Bertil Chapuis, Benoı̂t Garbinato, and Periklis Andritsos. An efficient type-

agnostic approach for finding sub-sequences in data. In 19th International Conference on High

Performance Computing and Communications; 15th International Conference on Smart City; 3rd

International Conference on Data Science and Systems (HPCC/SmartCity/DSS), pages 270–277.

IEEE, 2017

Abstract

In this paper, we present an efficient type-agnostic approach for finding sub-sequences in data, such

as textual documents or GPS trajectories. Our approach relies on data deduplication for creating an

inverted index. In contrast with existing data deduplication techniques that split raw sequences of

characters arbitrarily, our approach preserves the semantics of the original sequence via the notion of

token and can be used to index normalized data. When compared to indexing methods that preserve

the semantics and operate on normalized data, our method increases the relevance of the inverted

index, reduces its size and improves its performance. As data normalization is generally not used

beyond the scope of textual data, we introduce a framework that helps identify the extent to which

data should be normalized regardless of its type. On this basis, we demonstrate with a dataset made

of GPS trajectories that our method can be used agnostically: it can be used to index and query data

of a completely different type. Finally, we show that the resulting spatial-index is characterized by

a better discrimination than classic spatial-indexing approaches.

59

4.1 Introduction

We are witnessing an unprecedented rise in the demand for data processing. A large part of data

consists of ordered sequences that can be processed in a batch or in a streaming fashion. A common

need when processing data is to find common sub-sequences between a query and sequences of

items. In this paper, we introduce an efficient type-agnostic approach for finding sub-sequences in

sequences of data. We refer to a token as a semantic piece of information that should be preserved

as the sequences of data are handled. Tokens can be words in the context of textual data but can also

refer to groups of attributes such as the coordinates that compose GPS trajectories. When searching

for sub-sequences in data, a common approach consists in segmenting the sequences that compose

the dataset. Two very practical segmenting approaches are generally used by indexing solutions for

finding sub-sequences in data.

• N-grams. The most common technique for finding sub-sequences (mainly for textual data) is

called n-grams [96]. By computing all the possible overlapping sub-sequences of size n in a

sequence of tokens, n-grams give exhaustive results. This approach comes with a high cost in

terms of storage requirements that tends to increase with the overlapping factor n. When used

in the context of spatial-indexing, the number of possible n-gram combinations explodes and

disqualifies this technique.

• Hash-based. Another approach for producing segments, called hash-based (HB), identifies

non-overlapping contiguous sub-sequences of tokens, called chunks [18]. Chunks can be

identified by comparing the hash sums of the successive tokens to some constant. If the

hash sum is equal to the constant, then a chunk boundary is set, otherwise the next token is

hashed and the process is repeated until one is found. This approach requires less storage and

computing power than n-grams, but gives non-exhaustive results. In addition, as the number

of possible hash sums is limited to the number of possible tokens, it tends to produce many

small chunks, which lead to the detection of short and irrelevant sub-sequences.

When studying these two segmentation approaches, we observe that there exists a clear tradeoff

between the n-gram approach (that requires a lot of resources) and the hash-based approach (that

trades effectiveness for efficiency). Some data deduplication techniques, such as content-defined

chunking (CDC), might be considered as optimized variants of the hash-based approach. These

techniques greatly improve the aforementioned tradeoff, which is significant in the context of data

storage. However, data deduplication operates on raw sequences of bytes and does not preserve the

semantic of tokens.

60

4.1.1 Contributions

In this paper, we introduce token-based chunking (TB), an approach for segmenting sequences of

tokens regardless of their type. The chunking mechanism used by this approach is inspired by CDC

but preserves the semantics of tokens and overcomes the issues associated with HB. Compared to

other segmenting techniques, TB greatly improves the effectiveness of the index and reduces its

size. We propose a normalization framework that can be used to evaluate and to determine the best

normalization settings. Normalization is relatively intuitive in the context of textual data. However,

the extent to which non-textual data, such as GPS trajectories, should be normalized is harder to

determine. Finally, we use TB for indexing trajectories and demonstrating that it overcomes the

discrimination problem that characterizes traditional spatial-indexing methods.

In the following sections we show that TB can be used as a general purpose technique for

building indexes on various kinds of sequential data. In Section 4.2, we give a bird’s eye view of

our approach. We provide a detailed description of TB in Section 4.4. In in Section 4.5, we describe

our normalization framework and show to what extent data should be normalized regardless of its

type. In Section 4.6, we present a detailed evaluation of TB with textual data. In Section 4.7,

we show how TB can be used to create an index for GPS trajectories. Finally, in Section 4.8, we

highlight previous works from the data storage and the data deduplication fields.

4.2 Overall Approach

An inverted index is usually composed of terms from a dictionary, each of which points to a posting

list that contains document identifiers. Boolean queries are then used to retrieve documents that

contain a set of query terms. Alternatively, phrase queries are used to take the position of the

term in the document into account. When building an index for searching for sub-sequences in

documents, using the terms from this dictionary usually gives poor results both in terms of efficiency

and effectiveness. Therefore, segmentation techniques such as n-gram, CDC or HB are used to

create the terms of the inverted index. The approach for creating the index could be summarized in

the phases listed hereafter.

1. Extraction. This phase depends on the type of the data sequence and extracts only meaningful

data. For example, in the case of XML data, the unnecessary tags and attributes are usually

removed.

61

2. Tokenization. This phase splits the extracted data into small pieces called tokens. In the case

of textual data, punctuation and white spaces can be used to create a sequence of tokens that

corresponds to words.

3. Normalization. Token normalization comprises all the operations that can be performed on

tokens (such as stop-word removal, equivalence classes, case folding, true casting, stemming

or lemmatization).

4. Segmentation. When looking for sub-sequences, segmentation techniques, such as n-grams

or HB, are used to compute overlapping or non-overlapping sequences of tokens that are then

used as dictionary terms.

5. Indexing. This phase creates the inverted index by adding the segments and the document

identifiers to the dictionary and the posting lists.

CDC operates directly on sequences of bytes or characters and Phases 2 and 3 are usually

skipped [50, 9]. In contrast, TB operates on tokens and benefits from the tokenization and nor-

malization phases.

4.3 Background and Model

Our approach is built on results from three domains, namely tokenization, normalization and data

deduplication. To describe how these techniques operate, we first introduce the notion of an al-

phabet, consisting of a finite set of symbols. Formally, we define Si, an alphabet containing bit

sequences of fixed length i, e.g., S1 = {0,1} and S2 = {00,01,10,11}; we have |Si| = 2i being the

size of the alphabet Si. Next, we assume that the considered alphabet is S8, the set of all possible

bytes that can be used to represent ASCII characters. We also define a byte word as a sequence

of variable size made of symbols from S8. Using Kleene closure, we have S⇤8, the set of possible

byte words. Assuming Sn
8 is the set of all byte words of exactly size n, we have:

S⇤8 =
[

n2N
Sn

8 (4.1)

Hereafter, we introduce the concepts and terminology that are useful for understanding our

approach.

62

4.3.1 Tokenization

In the context of textual data, tokenization splits sequences of characters into words of a given

language. In other words, tokenization is a process that takes a sequence of bytes as input and

produces a sequence of meaningful tokens as output. Tokens belong to the infinite alphabet T = S⇤8.

On this basis, we can define tokenization as a function fc : S⇤8! T ⇤, where T ⇤ is a Kleene closure on

T that contains all the possible tokens. For example, assuming the considered language is English

and bytes are interpreted as ASCII characters, byte sequence hT he quick brown f oxi is tokenized

as h hT hei,hquicki,hbrowni,h f oxi i, which we simply write hT he,quick,brown, f oxi in the rest of

the paper.

4.3.2 Normalization

In many cases, tokens can be different but convey similar semantics. This is the case, for example,

when a word starts with a capital letter at the beginning of a sentence. Normalization removes such

superficial differences, so that a match can occur on semantically similar tokens. We define it as a

function fn : T ⇤ ! T ⇤n , where Tn is a set of tokens that depends on the type of normalization being

applied. For example, a case-folding normalization function, which simply replaces capital letters

by lowercase letters, would produce tokens in a subset of T . In contrast, a stemming normalization

function, which defines heuristics for making similar words converge toward the same tokens, would

produce tokens that do not necessarily belong to the English language.

4.3.3 Data Deduplication

Data deduplication can be seen as a particular approach to data compression; it operates on large

corpora of files, rather than independent files. At the heart of data deduplication techniques, we

find chunking algorithms that process multiple files in order to find common data chunks. Formally,

a chunking algorithm takes a sequence of data as input, in the form of one (long) byte word w 2
S⇤8, and returns a sequence of byte words rw = hw1,w2, · · · ,wki, called the recipe of w, such that

8wi 2 rw : wi 2 S⇤8 and w = w1kw2k · · ·kwm. The byte words of recipe rw are precisely what we call

chunks. For example, two possible recipes for byte word h25763537i are hh25i,h76i,h35i,h37ii
and hh257i,h6353i,h7ii.

Another way to understand recipe rw consists in introducing a new alphabet C = S⇤8, which

contains all the possible byte words (the symbols of that new alphabet), and seeing rw as a word

built using symbols of C. Note that C is an infinite alphabet, contrary to S8. Using Kleene closure

63

again, we have C⇤, the set of all possible recipes. Assuming Cn is the set of all recipes of exactly

size n, we have:

C⇤ =
[

n2N
Cn (4.2)

On this basis, we define chunking as a function fc : S⇤8!C⇤ such that fc(w) = rw, with w and

rw satisfying the constraints mentioned earlier. Note that in practice, each chunk is stored only once

and is referenced in one recipe or (hopefully) more (hence the deduplication). That is, the recipe is a

type of meta-data containing only references to actual chunks from which the original data sequence

can be recreated.

c1 c2 c3

b1 b2 b3F

Insert

b4

c4

c1 c2 c3’

b1 b2 b3
Rolling
HashF’ b4

c4

s

s

Rolling
Hash

h mod d ≠ 0

h mod d = 0 h mod d = 0 h mod d = 0 h mod d = 0

h mod d = 0 h mod d = 0 h mod d = 0 h mod d = 0

h mod d ≠ 0

Figure 4.1: Content-defined chunking (CDC)

Fixed-size chunks are common but come with a major drawback: when bytes are added at the

beginning of a sequence, all the following chunk boundaries are shifted. CDC solves this issue by

detecting addition-resistant chunk boundaries [42]. Figure 4.1 depicts how a simple CDC algorithm

operates. A rolling hash function [111] of size s, depicted here by a black box, slides over a file

F one byte after the other. After each move, the rolling hash function computes a hash sum h for

the bytes that are located in the window. Chunk boundaries are detected by checking the condition

h mod d = 0 on the hash sums produced by the sliding window, where d is a user defined divisor.

The divisor d is typically used to manage the average chunk size. As the boundaries are based on

the content, they remain correct in the face of insertions. If we assume two successive versions of

a file, such that F 0 is a copy of F with an insertion in the middle, the algorithm will be able to find

the same boundaries again and to isolate the chunk in which the insertion occurred.

64

4.4 Token-based chunking

As stated in Section 4.1, CDC breaks the semantics of tokens. This problem comes from the fact

that CDC relies on rolling hash functions to identify breakpoints. In order to compute hash sums on

sequences of bytes, rolling hash functions usually map the symbols of the alphabets S8 to a set of

precomputed random irreducible polynomials. As the alphabet S8 is limited in size, these random

polynomials are necessary in order to uniformly and randomly distribute the hash sums produced

by the rolling hash function over the hash sum space [111].

Precomputing a set of irreducible random polynomials works well when the size of the alphabet

is small and known in advance, such as in the case of S8. In our case, however, we use an alpha-

bet made of tokens T , which is potentially infinite, i.e., |T | = •. Therefore, it is not possible to

precompute one irreducible random polynomial per token. Furthermore, in contrast to CDC, we

handle sequences of tokens and produce recipes that contain sequences of tokens. Another way to

understand this issue consists in introducing a new alphabet CT = T ⇤, which contains all the possi-

ble sequences of tokens. Again, a Kleene closure can be used to define C⇤T , the set of all possible

recipes over the alphabet T , such that:

C⇤T =
[

n2N
Cn

T (4.3)

Using this definition, we can formally define TB as the function ftb : T ⇤ !C⇤T . The algorithm

we introduce does not rely on a precomputed set of irreducible random polynomials in order to

detect chunk boundaries and satisfy this definition by producing chunks that consist of sequences

of tokens.

The algorithm is decomposed into two parts. The first part is given in Algorithm 4 and is

responsible for detecting chunk boundaries. The main configuration parameters are a minimum

(min) and a maximum (max) chunk size, a divisor (d) and a window size (s). As the tokens are

consumed, a rolling hash function produces hash sums; new chunks are produced when these hash

sums meet a certain criterion, represented here by the expression h mod d = 0. TB differs from

CDC in the sense that it consumes tokens instead of bytes and produces sequences of tokens instead

of sequences of bytes.

65

Algorithm 4 Token-based chunking algorithm
initialize(min,max,d,s):

chunk {?}
hash a rolling hash function of size s

read(token):

chunk chunk :: token
h hash.slide(token)

if |chunk|� min and (h mod d = 0 or |chunk|� max) then
write(chunk)
chunk {?}

The second part of the algorithm is the rolling hash function given in Algorithm 5. As it is

not possible to precompute random irreducible polynomials for a vocabulary of an unknown size,

we assume that the hash sums produced by hashing the tokens are random enough to replace the

precomputed irreducible random polynomials. To do so, we use a fast non-cryptographic hash

function called Murmur Hash which produces 32 bit integers. To represent the incoming and out-

going tokens, a fixed size sliding window of hash sums is maintained over the sequence of tokens.

Our evaluation setup shows that the sums produced by this rolling hash function reach the desired

properties and produce balanced hash sums.

Algorithm 5 Token-based rolling hash function
initialize(s):

a 31
b as

hash a murmur hash function
window an array of size s filled with 0
position 0
h 0

slide(token):

in hash.digest(token)

out window[position]

window[position] in
position (position+1) mod s
h a⇤h+ in�b⇤out
return h

66

The segments generated by this algorithm can be used as dictionary terms and overcome the

following problems. First, a common pitfall of HB lies in the fact that the hash sum of a single token

is used to identify chunk boundaries. Therefore, HB could identify boundaries for very frequent

tokens such as the. In contrast, our algorithm is not sensitive to token frequency as it computes

hash sums over a sliding window. Second, the main problem associated with CDC relies on the

fact that it can break the semantics of the sequence of tokens. Unlike CDC, our method preserves

the semantics of the tokens. In addition, the introduction of thresholds tends to mitigate the risk

of extracting small or large segments that would impact precision and recall negatively. As we

will show later, our algorithm is characterized by a much improved effectiveness and efficiency

compared to its counterparts.

4.5 Normalization framework

When handling textual data, the extent to which normalization is performed is often based on simple

intuitions. However, these intuitions are not valid when dealing with different types of data, such as

GPS trajectories. In this section, we introduce a normalization framework for evaluating the extent

to which normalization should be performed regardless of the data type. By observing the evolution

of precision and recall on a very simple textual dataset normalized at different levels, we show when

the normalization of the data should be strengthened or weakened.

In information retrieval, precision and recall are often used to measure the effectiveness of an

index, so we begin by recalling these metrics. Precision corresponds to the fraction of retrieved

items that are relevant. In other words, precision = t p/(t p+ f p), with t p (true positive) the number

of relevant items retrieved and f p (false positive) the number of irrelevant items retrieved. Recall

corresponds to the fraction of relevant items that are retrieved. More formally, recall = t p/(t p +

f n), with t p the number of relevant items retrieved and f n (false negative) the number of relevant

items that have not been retrieved.

Another important measure, when looking for similarities, is the Jaccard similarity coefficient.

In our context, this coefficient can be used to measure the similarity between two recipes, which

corresponds to sets of chunks. Therefore, given two recipes r1,r2 2C⇤T , their similarity coefficient

is:

J(r1,r2) =
|r1\ r2|
|r1[r2|

(4.4)

67

We previously stated that a good normalization function should make highly similar sequences

of tokens converge to more similar recipes. So, given two highly similar sequences sa,sb 2 T ⇤, a

good normalization function fn should have the following property:

J(ftb(fn(sa)), ftb(fn(sb))) > J(ftb(sa), ftb(sb)) (4.5)

Unfortunately, this metric does not indicate when one should stop making normalization more

aggressive in the context of chunks. Given an index and a query that use the same normalization

function, precision should remain stable and should be close to 1, as the probability of having two

large identical sequences of words in unrelated documents is low. Whereas, recall should increase as

more relevant items will be found in the set of relevant items. Therefore, we can say that precision

and recall can be used to identify the optimal extent of a normalization function, and we demonstrate

it in the following paragraphs.

In the case of textual data, a tokenizer is used to split a given text into a sequence of tokens

that belong to the alphabet T . A sequence of tokens can be altered during the normalization phase

to make highly similar tokens converge toward the same token. In order to illustrate more practi-

cally the effect of data normalization on a small dataset, we consider a set S of four sequences of

tokens s1,s2,s3,s4 2 S⇤8. We assume that the deduplication of these sequences results in four recipes

r1,r2,r3,r4 2C⇤ containing a single chunk after deduplication, such that:

r1 = ftb(s1) = {hA, f ox,runsi} (4.6)

r2 = ftb(s2) = {hT he, f oxes,runi} (4.7)

r3 = ftb(s3) = {hMaster, f ox, is,runningi} (4.8)

r4 = ftb(s4) = {hBut,chickens,are,running, f asteri} (4.9)

We now consider a query such that rq = ftb(sq) = {hA, f ox,runsi} and assume that both s1 and

s2 are relevant answers. If sq is used to retrieve relevant items in S by looking for exact duplicates,

we expect a single result that corresponds to s1. In this case, precision would be 1/(1+0) = 1 and

recall would be 1/(1 + 1) = 1/2. We now consider a normalization function for textual data f a
n ,

which removes common stop-words, applies some case-folding rules and does some stemming on

verbs and adjectives. The resulting recipes after normalization and deduplication might look like

this:

68

ra
1 = ftb(f a

n (s1)) = {h f ox,runi} (4.10)

ra
2 = ftb(f a

n (s2)) = {h f ox,runi} (4.11)

ra
3 = ftb(f a

n (s3)) = {hmaster, f ox,runi} (4.12)

ra
4 = ftb(f a

n (s4)) = {hchicken,run, f asti} (4.13)

By using the same normalization function on the query sq, we end up with the recipe ra
q =

ftb(f a
n (sq)) = {h f ox,runi} and we expect two results that correspond to the two relevant sequences

of token s1 and s2. In this case, precision would still be 2/(2+0) = 1, but recall would improve at

2/(2+0) = 1. We can now easily show that our assertion regarding Jaccard similarity is true since:

J(ra
1,r

a
2) =

|{h f ox,runi}\{h f ox,runi}|
|{h f ox,runi}[{h f ox,runi}| =

1
1

= 1 (4.14)

is greater than:

J(r1,r2) =
|{hA, f ox,runsi}\{hT he, f oxes,runi}|
|{hA, f ox,runsi}[{hT he, f oxes,runi}| =

0
2

= 0 (4.15)

In order to determine when we should stop making a normalization function more aggressive,

we consider a second normalization function f b
n that only retains nouns and drops all the other

words. The resulting recipes after normalization and deduplication might look like this:

rb
1 = ftb(f b

n (s1)) = {h f oxi} (4.16)

rb
2 = ftb(f b

n (s2)) = {h f oxi} (4.17)

rb
3 = ftb(f b

n (s3)) = {h f oxi} (4.18)

rb
4 = ftb(f b

n (s4)) = {hchickeni} (4.19)

In this case, precision would drop to 2/2+1 = 2/3 and recall would remain stable at 2/(2+0) =

1. As a consequence, we get an idea of when it is sound or not to normalize in the context of

TB. Although recall improves, the data can be normalized more aggressively. On the contrary, a

drop in precision indicates that normalization is too aggressive and the tokens do not capture what

characterizes the sequence anymore.

69

4.6 Evaluation

Method Possible chunks
1-gram {hthei,hquicki,hbrowni,h f oxi}
2-gram {hthe,quicki,hquick,browni,hbrown, f oxi}
3-gram {hthe,quick,browni,hquick,brown, f oxi}
4-gram {hthe,quick,brown, f oxi}
HB {hthei,hquick,brown, f oxi}
CDC {hthe quici,hk brown f oxi}
TB {hthe,quicki,hbrown, f oxi}

Table 4.1: Indexing methods

In this section, we compare TB with some other state of the art segmentation methods used for

building inverted indexes and finding similarities in document corpora. Table 4.1 enumerates these

methods and illustrates some possible segments produced by consuming the sequence of four tokens

hthe,quick,brown, f oxi. As illustrated, the methods based on n-gram compute all the possible

contiguous overlapping sequences of tokens. HB produces non-overlapping chunks of variable

size [18]. CDC finds chunk boundaries based on bytes, hence a token can be divided arbitrar-

ily [50, 9].

4.6.1 Dataset

For each evaluated method, we indexed a full dump of the English version of Wikipedia (50GB

of raw textual data). Except for CDC, all the evaluated methods operate on normalized tokens.

The normalization procedure was performed using Apache Lucene [1], a suite of tools that, among

others, includes natural language processing methods. We performed the following normalization

steps: tokens are normalized to lowercase characters; numeric tokens are filtered out; rare big tokens

(larger than 1000 characters) are filtered out; English possessive forms are removed; common stop

words are filtered out; and stemming is performed.

4.6.2 Queries

In order to evaluate the effectiveness and efficiency of the different methods, we introduce two

search scenarios. The first consists in searching the dataset for exact sentences. In this case, the set

of queries is built by randomly choosing Wikipedia articles and, within each one, randomly picking

70

two consecutive sentences. For each consecutive sentence, we then verify their uniqueness in the

dataset and eliminate the one that occurs several times. Thus, this set contains 973 queries that are

guaranteed to have one relevant result. The second scenario consists in searching the dataset for

cross references, which typically corresponds to cases of plagiarism detection. We build this set

of queries by combining the queries of the first set into 486 queries that are guaranteed to have at

most two relevant results. This scenario is important because phrase queries, which accounts for the

position of the terms in the document, cannot be used in the case of n-gram indexes, which results

in a loss of precision.

4.6.3 Configuration

Method 1-gram 2-gram 3-gram 4-gram HB CDC TB
Unit Token Token Token Token Token Byte Token
Window size - - - - - 23 3
Min size - - - - - 41 4
Max size - - - - - 248 27
Divisor - - - - 6 48 3
Backup Divisor - - - - - 24 -
Normalization Yes Yes Yes Yes Yes No Yes
Exact sentence (query type) Phrase Phrase Phrase Phrase Boolean Boolean Boolean
Cross reference (query type) Boolean Boolean Boolean Boolean Boolean Boolean Boolean

Table 4.2: Configuration parameters

Table 4.2 lists all of the configuration parameters we used to conduct our experiments. Param-

eter ”Unit” shows if the method mentioned in the corresponding column operates on tokens or on

bytes. The ”Window size”, ”Min size” and ”Max size” parameters depend on the unit mentioned

above and specify constraints on the size of the chunks produced. The ”Divisor” and ”Backup divi-

sor” are used in order to detect chunk boundaries, as explained in Section 4.3. In order to compare

the segmentation methods in a fair manner, we targeted configuration parameters that would gener-

ate segments of approximately 52 bytes on average. To reach this desired average chunk size, we

defined the ”Min size”, ”Max size” and ”Divisor” parameters for CDC according to the recommen-

dations described by Eshghi et al. [42].

4.6.4 Environment

We evaluated our indexes with Apache Lucene [1], a state of the art information retrieval library

developed in Java. This library provides the necessary components for configuring n-gram indexes.

71

We implemented some custom components for building HB, CDC and TB indexes. Furthermore,

the library contains a good set of benchmarking tools that we used as a basis to measure precision,

recall and performances. Regarding our hardware configuration, we ran all our benchmarks using a

Dell Power Edge T110 II with an Intel Xeon CPU clocked at 3.50GHz and 16GB of RAM.

4.6.5 Chunk distribution

0 50 100 150

0.
00

0
0.

01
0

0.
02

0
0.

03
0

Chunk size in bytes

P(
si

ze
)

TB
CDC
HB

Figure 4.2: Chunk distribution

Figure 4.2 depicts the chunk size distribution for the three non-overlapping segmentation methods

we evaluated. As illustrated here, HB produces many small chunks, which results in numerous

irrelevant query results (Figure 4.7) and in a relatively poor throughput (Figure 4.5). CDC solves

this issue by introducing the min and max thresholds, but the arbitrary chunk boundaries result in

a loss of relevant query results. Therefore, TB reaches the best tradeoff in terms of efficiency and

effectiveness by operating on tokens instead of bytes and avoiding arbitrary chunk boundaries.

72

4.6.6 Index size

Si
ze

 (G
B)

0
10

20
30

40

6.44

19.48

30.01

46.61

14.43

24.35

14.44

1−gram 2−gram 3−gram 4−gram HB CDC TB

Figure 4.3: Index size

C
hu

nk
s

(m
io

)

0
20

0
60

0
10

00

10.29

165.89

629.63

1295.38

215.39
277.9 243.7

1−gram 2−gram 3−gram 4−gram HB CDC TB

Figure 4.4: Number of dictionary terms

Figure 4.3 and 4.4 depict the index size and the number of dictionary terms for the methods we

compared. Here, we notice that, as the size of the n-gram increases, so does the index in terms of

size and dictionary terms. From this perspective, HB and TB are more efficient than CDC, which

confirms the positive effect of avoiding arbitrary chunk boundaries.

73

4.6.7 Efficiency

R
eq
ue
st
s/
se
c

0
20
0

40
0

60
0

80
0

10
00

119.22 84.58 112.46 88.74

210.57

701.8

1058.76

1−gram 2−gram 3−gram 4−gram HB CDC TB

Figure 4.5: Throughput for exact sentence queries

R
eq
ue
st
s/
se
c

0
10
0

20
0

30
0

40
0

50
0

60
0

132.49

46.92 61.64 47.12

129.81

458.55

629.49

1−gram 2−gram 3−gram 4−gram HB CDC TB

Figure 4.6: Throughput for cross reference queries

Throughput is a measure of efficiency, which corresponds to the number of requests per second

that our setup can handle. Figures 4.5 and 4.6 depict the throughput for the methods we compared

and for the search scenarios we evaluated, respectively. Regarding this metric, we first notice that

n-gram methods display a poor throughput. This mainly comes from the fact that n-gram methods

account for the position of the terms in the documents, but also from the fact that the size of the

index grows proportionally to the size of the n-gram. In contrast, as the segments extracted by HB,

CDC and TB are large and non-overlapping, it is not necessary to account for their positions in the

documents.

74

R
es
ul
ts

0
10
0

20
0

30
0

40
0

50
0

34.02 34.69 34.02 34.01

588.64

26.01 23.48

1−gram 2−gram 3−gram 4−gram HB CDC TB

Figure 4.7: Number of results for exact sentence queries

The poor throughput of HB is explained by the great number of irrelevant results (Figure 4.7),

whereas the medium throughput of CDC is explained by the index size (Figure 4.3). Therefore,

by addressing these two issues, TB is the most efficient method with a maximum throughput of

1058.76 requests per second.

4.6.8 Effectiveness

F1

0.
0

0.
2

0.
4

0.
6

0.
8

0.95 0.95 0.95 0.95

0.77
0.72

0.83

1−gram 2−gram 3−gram 4−gram HB CDC TB

Figure 4.8: F1 score for exact sentence queries

The F1 score is a measure of effectiveness, which corresponds to the harmonic mean of precision

and recall. In Figure 4.8, we notice the cost of adopting HB, CDC or TB over n-grams in terms

of effectiveness when searching for exact sentences. On one hand, n-gram methods are the best

75

in terms of effectiveness but perform poorly in terms of throughput. On the other hand, when

comparing TB with n-gram methods, we notice a loss of approximately 10% percent in terms of

effectiveness (F1) for a gain of 800% in term of efficiency (throughput). As highlighted here, in

comparison to HB and CDC, TB clearly optimizes this tradeoff.

F1

0.
0

0.
2

0.
4

0.
6

0.
8 0.77

0.94 0.96 0.96

0.65
0.72

0.8

1−gram 2−gram 3−gram 4−gram HB CDC TB

Figure 4.9: F1 score for cross reference queries

Figure 4.9 depicts the F1 score for the second search scenario that consists in searching for cross

references. As mentioned earlier, it is not possible to use phrase queries in this context, and we

notice a drop in the F1 score for the 1-gram method. Consequently, as the other n-gram methods use

more storage than TB and have a much lower throughput, the choice regarding this use case is not a

matter of tradeoff anymore.

4.7 Toward spatial data

In this section, we empirically show that, by abstracting the notion of token, our approach can be

used to create a spatial-index and perform trajectory-based queries. Given a trajectory, the idea is to

find all the trajectories in the dataset that share some common sub-sequence with the query. Today,

to create search trees, most trajectory indexes use spatio-temporal bounding boxes. For instance,

this is the case for the QuadTree, the RTree, and the TBTree [49, 109]. When dealing with trajecto-

ries, bounding boxes that span over three dimensions introduce much dead space. The SETI index

capitalizes on the special nature of the temporal dimension to address this discrimination issue [22].

This kind of index performs well when the queries involve intervals. Their performances, however,

decrease drastically once the queries are based on trajectories. As a result, similarity and distance

76

measures are used to filter the results and detect which trajectories actually share some common

sub-sequence with the query. Computing similarities for a huge result set that includes many out-

liers introduces an important overhead. As our approach indexes sub-sequences, this filtering step

is not necessary.

4.7.1 Dataset

To perform our experiment, we used a set of GPS trajectories gathered by Nokia from 2009 to

2011 [89]. To produce daily trajectories, we grouped the recorded GPS locations per user and per

day. The resulting dataset contains 32’144 distinct trajectories located in the area of Lausanne,

Switzerland. GPS trajectories are composed of several GPS locations each one having several prop-

erties such as longitude, latitude and time. This kind of sequence differs from the kind of data we

previously examined, as several dimensions are involved. Hence, using L, we denote the alphabet

composed of all the possible longitude/latitude coordinates, and using L⇤, we denote the set of all

possible sequences of GPS coordinates. In our case, the notion of time is simply expressed by the

fact that sequences are ordered.

4.7.2 Normalization

s1

s2

 ∩

f (s1)n
geo

f (s2)n
geo

f (s1)n
geo f (s2)n

geo

Figure 4.10: Normalization and similarity detection in GPS trajectories

77

GPS tracking devices are not synchronized and might showcase different sampling rates. Therefore,

two persons following the same path will end up with different sequences of GPS locations. This

issue can be solved by normalizing the data. In order to find sub-sequences in the trajectories, we

normalized the coordinates by using a hash function, called GeoHash, which subdivides the longi-

tude/latitude coordinate system into cells [105]. In our case, GeoHash maps any longitude/latitude

coordinates into cells of approximately 150m by 150m. The center of the cell is then used as the

normalized coordinate. Such a normalization function could be defined as f geo
n : L⇤ ! L⇤geo with

Lgeo ✓ L. Figure 4.10 illustrates the fact that, after normalization, trajectories converge toward

something more identical. The sequences that result from normalizing the coordinates can directly

be consumed by TB. Our configuration produces chunks that have an average length of 10 normal-

ized coordinates that correspond to an average distance of 1,5 kilometers by sub-sequences.

4.7.3 Preliminary results

Figure 4.11: A trajectory query (red) and some results that share sub-sequences (blue)

We compared the resulting index with two common spatial-indexes, namely the Quad Tree [49] and

the Sort-Tile-Recursive Tree [112] implemented in JTS [2]. To perform our experiment, we selected

a trajectory in the dataset and queried the three indexes for similar trajectories. As the dataset is very

dense, the Quad Tree returned 22’304 results and the Sort-Tile-Recursive Tree discriminated slightly

better with 18’070 results, that, in both cases, represents a great number of outliers that confirms

the discrimination problem. As our inverted index has a dictionary made of unique trajectory sub-

sequences, it preserves information regarding the similarity of the trajectories. As a result, the query

78

returned the 36 matches depicted in Figure 4.11; they are guaranteed to share some sub-sequences

of more or less 1,5 kilometers with the query.

4.8 Related Work

The idea of computing all the overlapping sub-sequences of terms in a document was first introduced

by Mamber et al. in [96]. Brin et al. also describe some methods for copy detection that include

n-gram and hash-based segmentation [18]. The term shingle, introduced by Broder et al. [21], is of-

ten used as a substitute for n-gram. Data deduplication is mainly used in the context of data storage

and data synchronization [102, 110, 100]. It usually relies on CDC [42, 11] for identifying identical

sub-sequences in data. In order to avoid redundancies, chunks are identified by their hash sums and

stored in content addressable storage. Recipes consist of lists of chunk hash sums that are used to

reconstruct the original data. Muthitacharoen et al. [102] improve CDC by introducing maximal

and minimal chunk sizes that positively affect the compression ratio. Eshghi and Tang [42] intro-

duce a backup divisor that enables avoiding arbitrary cuts when the maximal threshold is reached.

More recently, to achieve even better compression rates, other interesting methods, such as bimodal

content-defined chunking [84] and frequency-based chunking [94], were proposed. Two distinct

documents whose recipes share common chunks are related to each other with a high probability.

This assumption is used by Forman et al. [50] to identify near-duplicates in very large collections

of manuals and technical documents. Bhagwat et al. [9] generalize the idea of using recipes to build

inverted indexes for near-duplicate search. They create an inverted index where the dictionary terms

correspond to the hash sums of chunks and the postings correspond to document identifiers.

Our approach, in contrast, does not operate on raw data and can be used to agnostically index

different kinds of data. Similarity detection in textual data has been studied for several decades

and many techniques have been investigated. For example, techniques based on local maxima and

minima, sometimes referred to as winnowing, are used to filter hash values [115, 10]. In our future

work, we will explore how techniques commonly used with textual datasets can be leveraged with

different types of data.

4.9 Conclusion & Future Work

In this paper, we have introduced token-based chunking, a generic approach for finding sub-sequences

in data. We have studied its characteristics in terms of storage requirements, throughput, precision

79

and recall and we have demonstrated that it performs better than its traditional counterparts at trad-

ing effectiveness for efficiency. We have shown that, by operating on tokens, this technique can be

used agnostically on two types of data. We have introduced a framework that helps in identifying

the extent to which data should be normalized regardless of its type. In addition, we also have em-

pirically demonstrated that token-based chunking can efficiently index GPS trajectories. Finally, we

have shown that the resulting index has discrimination characteristics better than traditional spatial-

indexing approaches. To our knowledge, the usage of a segmentation methods inspired by data

deduplication in the context of spatial-indexes has not been explored before and our preliminary

results are promising. This opens exiting new research avenues for trajectory and sub-trajectory

mining and we plan to investigate the properties of this novel kind of spatial-index in the future.

80

Chapter 5

Geodabs: Trajectory Indexing Meets
Fingerprinting at Scale

Bertil Chapuis and Benoı̂t Garbinato. Geodabs: Trajectory indexing meets fingerprinting at scale.

In 38th International Conference on Distributed Computing Systems (ICDCS). IEEE, 2018

Abstract

Finding trajectories and discovering motifs that are similar in large datasets is a central problem for

a wide range of applications. Solutions addressing this problem usually rely on spatial indexing and

on the computation of a similarity measure in polynomial time. Although effective in the context

of sparse trajectory datasets, this approach is too expensive in the context of dense datasets, where

many trajectories potentially match with a given query. In this paper, we apply fingerprinting, a

copy-detection mechanism used in the context of textual data, to trajectories. To this end, we finger-

print trajectories with geodabs, a construction based on geohash aimed at trajectory fingerprinting.

We demonstrate that by relying on the properties of a space filling curve geodabs can be used to

build sharded inverted indexes. We show how normalization affects precision and recall, two key

measures in information retrieval. We then demonstrate that the probabilistic nature of fingerprint-

ing has a marginal effect on the quality of the results. Finally, we evaluate our method in terms of

performances and show that, in contrast with existing methods, it is not affected by the density of

the trajectory dataset and that it can be efficiently distributed.

81

5.1 Introduction

The booming trend of ubiquitous computing is massively affecting the volume of data we pro-

duce today, in particular via the location traces, or trajectories, our smartphones generate. Such

trajectories consist of sequences of locations produced by mobile users via their GPS-capable de-

vices. In this paper, we address two key problems associated with dense trajectory datasets: finding

similar trajectories and discovering common motifs in trajectories. These problems are indeed

at the heart of many location-based application scenarios, such as car sharing, traffic forecasting,

public-transport optimization, etc. By dense trajectory dataset, we mean one containing many (par-

tially) overlapping trajectories. Consider, for instance, a city like London, congested with roads and

streets: the trajectories associated with people traveling through it every day have a high probability

of overlapping, at least partially. This is the type of trajectory data set we consider in this paper.

A common approach to solving these problems consists in splitting the solution into the follow-

ing two steps:

1. Select candidate trajectories by using a spatial index

2. Compare these trajectories by using a distance measure

More precisely, Step 1 consists in querying a spatial index, e.g., a quadtree [49], an r-tree [64], a

tb-tree [109], a seti-tree [23] or a k-d tree [8], in order to select candidate trajectories that are similar

or that contain common motifs. Such space-partitioning data structures are typically queried with

bounding intervals and sometimes a direction. Yet they have a major drawback: as their bounding

strategy are coarse grained, their ability to discriminate long trajectories is not very effective. This

results in many irrelevant trajectories being selected.

Step 2 then consists in using a distance measure, such as the Discrete Fréchet Distance (DFD) [41]

or the Dynamic Time Warping distance (DTW) [129], in order to further discriminate the candidate

trajectories selected in Step 1. DFD and DTW give good qualitative results and many systems have

adopted them to measure the distance between trajectories. However, computing DFD or DTW for

a pair of trajectories of cumulated length n has a complexity of O(n2). Furthermore, discovering

similar motifs in a pair of trajectories requires computing DFD for n4 pairs of sub-trajectories [119].

In summary, when faced with a dense set of trajectories, traditional spatial-indexing structures

tend to select many irrelevant trajectories, upon which a costly distance measure such as DFD

or DTW must then be computed. As a consequence, this combination of techniques results in

serious performance issues when used on dense datasets.

82

5.1.1 Fingerprinting to the Rescue

We argue that the similarity between trajectories and textual data has not been fully exploited. A

text can be seen as a sequence of words, and a trajectory can be seen as a sequence of points. It

is then known that slight variations in word form, e.g., singular vs. plural, conjugation, etc., must

be normalized to compare similar but not strictly identical texts. This is necessary, for instance, to

detect plagiarism. Similarly, minor variations in the location accuracy and sampling rate, which are

known to happen when using GPS devices, can compromise the detection of similar trajectories.

Hence, by discretizing trajectories, e.g., by using geohashing [105], the negative effect of such

minor variations can be mitigated.

A first attempt to exploit this similarity can be found in some geographical information systems

that rely on geohashing to create inverted indexes of landmarks. For example, an open-source

search engine called Elastic and adopted by foursquare, relies on this approach.1 Google even

conceived an alternative to geohash called S2 that provides the additional guarantee that the surfaces

covered by hashes have uniform areas.2 More recently, geohashing has been used for sub-sampling

and clustering location traces [118, 39]. As of today, however, no research exploits the similarity

between trajectories and textual data in terms of their sequentiality, i.e., the fact that sequences of

locations are similar to sequence of words.

Extending the analogy between textual data and trajectories is our main contribution in this

paper. More precisely, in the context of textual data, word indexing is known to be ineffective in

detecting similarities between large portions of a text, even more so between complete documents.

This is where fingerprinting comes to the rescue, by computing hashes on groups of contiguous

words and by using the number of common fingerprints between two documents as a distance mea-

sure. An inverted-index made of fingerprints that point to lists of document identifiers can then be

used to efficiently retrieve documents that share some of their content. By analogy, fingerprinting

can be used for finding similar trajectories and discovering similar motifs. Intuitively, fingerprinting

captures the temporal dimension of trajectories by taking into account the ordering of their points.

To our knowledge, the possibilities offered by this observation have not yet been explored.

5.1.2 Contribution and Roadmap

We introduce geodabs, a special kind of fingerprint that can be used for indexing and discovering

similarities in dense trajectory datasets. Geodabs are extracted from trajectories with a fingerprint-
1https://elastic.co
2https://s2geometry.io

83

https://elastic.co
https://s2geometry.io

ing algorithm called winnowing [115]. Geodabs combine hashing and geohashing to achieve two

key properties. First, hashing addresses the discrimination issue associated with regular spatial in-

dexation techniques. Second, geohashing enables us to distribute the index accross several nodes

in a balanced fashion. As a result, geodabs can be used to create effective and scalable trajectory

indexes.

The remainder of the paper is organized as follows. We formally introduce the problems ad-

dressed in this work, together with some basic definitions, in Section 5.2. Then, in Section 5.3,

we provide the background required to understand our approach and we discuss related work. In

Section 5.4, we describe geodabs, our fingerprinting based-solution. In Section 5.5, we shows how

normalization affects two key measures in information retrieval, namely precision and recall. Fi-

nally, in Section 5.6, we evaluates geodabs both in terms of efficiency and effectiveness.

5.2 Trajectory-based querying

In this section, we introduce some basics definitions and formally state the problem addressed in

this paper.

5.2.1 Moving Objects, Trajectories and Distances

Every object located on earth has a real position that can be expressed with a latitude-longitude point

p = (j,l). The real position p of a moving object at time t can be expressed with a continuous-time

function P(t) = p. In practice, the points forming a trajectory are obtained with some GPS-tracking

device, which reduces the continuous-time function P to a discrete trajectory S with a certain degree

of accuracy. Hence, formally, a trajectory is modeled as a sequence of points S = hs1, ...,sni. The

length of a trajectory is denoted length(S). A motif (sub-trajectory) of S is denoted S̄.

Several methods enable us to compute the distance between two trajectories. Depending on

the method, the distance has different scales and meanings. Here, we generalise this idea with the

distance function d (Si,S j) = d, with d 2R+
0 . The smaller the distance between a pair of trajectories,

the greater their similarity is.

84

5.2.2 Finding Similar Trajectories and Motifs

Here, we address the problems of finding similar trajectories and of discovering common motifs in

trajectories. As we target dense trajectory datasets, we express these problems in terms of ranked

retrieval, i.e., many trajectories are expected to match a given query. In addition, ranked retrieval

also implies sorting the matching trajectories according to some criterion, in order to place those

most relevant early in the result list. With this in mind, we can now formally define the two problems

addressed in this paper.

Finding similar trajectories

Given a trajectory dataset D = {S1, ...,Sn}, a trajectory Sq /2 D, a distance function d and a dis-

tance Dmax, the problem consists in returning an ordered set R✓D where S 2 R) d (Sq,S) Dmax.

The ordering in R is then defined as follows: 8Si 2 R and 8S j 2 R with i < j, we have that

d (Sq,Si)  d (Sq,S j). That is, trajectories in R are at a maximum distance Dmax from trajectory

query Sq and they are ordered by their distance with respect to Sq.

Discovering common motifs in trajectories

Given two trajectories Si and S j, a distance function d and a length l, the problem consists in

returning a pair of motifs (S̄i, S̄ j) such that length(S̄i) = length(S̄ j) = l ^ 6 9(S̄0i, S̄0 j) for which

d (S̄0i, S̄0 j) < d (S̄i, S̄ j). That is, among all the pairs of motifs of Si and S j of length l, (S̄i, S̄ j)

is the one with the smallest distance between them.

85

5.3 Background and related work

5.3.1 Information Retrieval

Boolean Retrieval

earth mars

Terms PostingsQuery

Result

4 12 17 25

earth

sun

4 17

mars

…

8 12 17

12 25

…

moon 3 15 16

19 25 47

25 41

25

Figure 5.1: Building an Inverted Index

As highlighted in Figure 5.1, in its simplest form, an inverted index is usually composed of terms

that point to collections of document identifiers called postings lists [97]. Boolean queries can then

be used to retrieve all the documestnts that contain a set of words. Optionally, a posting list can also

contain the position of the term in the document. This positional information can then be used to

search for sub-sequences in documents. However, when searching for long sub-sequences of terms,

this approach showcases poor performances. In the context of trajectory indexing, we replace the

terms of the inverted index with features, called geodabs, extracted from trajectories.

Ranked Retrieval

In ranked retrieval, many records match with the query specified by the user, and it is common to

rank the results according to a similarity measure. Therefore, the user can begin by considering

the most relevant results and then decide to retrieve the remaining ones if necessary. In the context

of textutal data, the union and the intersection of two sets of words F and G can be used to derive

relevant similarity measures. For example, the Jaccard coefficient J(F,G) is commonly used to

gauge the similarity between texts and rank results [97]. Interestingly, the Jaccard distance dJ(F,G)

expressed in Equation 5.1 is complementary to the Jaccard coefficient and is proven to obey the

86

triangular inequality [82]. Therefore, this distance can be used in conjunction with an index of pre-

computed distances to efficiently prune candidates. In our context, we use the Jaccard distance to

implement function d (Sq,S j) and rank the trajectories retrieved from the inverted index.

dJ(F,G) = 1� J(F,G) = 1� |F \G|
|F [G| (5.1)

Normalization

It is worth noting that, in many cases, terms can be different but convey similar semantics or mean-

ing. In general, the process of mitigating these differences is referred to as normalization [97]. For

example, a common normalization technique consists in using equivalence classes for synonyms.

In the context of trajectory indexing, we refer to normalization as a function N(S) = S0, where S and

S0 are sequences of points.

Sharding

earth

sun

4

mars

…

8 17 25

25

…

moon 3 25

25 earth

sun

17

mars

…

12 19

12

…

moon 15 16

41

Shard 1 Shard 2

Figure 5.2: Sharding an Inverted Index

When an index becomes very large, it might not fit on a single computer anymore. As illustrated

in Figure 5.2, sharding the index across the nodes of a cluster becomes necessary. Here, the idea is

to route documents to specific shards in order to spread the load throughout the cluster. At query

time, all the shards might need to process a query to compute the result. Therefore, given the terms

87

specified in a query, a good sharding strategy tries to minimize the number of shards that need to be

contacted. Our solution effectively addresses this issue.

5.3.2 Fingerprinting

As mentioned in Section 5.3.1, searching for long sub-sequences in textual data by using words and

positional information is not very efficient. In practice, an inverted-index aimed at searching for

sub-sequences is usually populated with a different class of terms, referred to as fingerprints [20,

96, 67, 18]. Fingerprints usually correspond to a sub-set of the hash sums obtained by hashing

the n-grams of a document [115]. A n-gram is a sequence of n contiguous items, i.e., n words in

the context of textual data. A fingerprint usually corresponds to the hash sum h 2 R obtained by

hashing a n-gram. As the number of n-grams for a given text can be very large, a common practice

consists in retaining the subset of fingerprints that satisfy the condition h mod p = 0, where p is a

fixed sampling constant. The extracted fingerprint can then be used as terms in the inverted index.

Furthermore, given two sets of fingerprints, their similarity can easily be derived by the Jaccard

coefficient. In our context, we refer to fingerprinting as a function W (S) = F , where S is a trajectory

and F is an ordered set of fingerprints.

88

5.3.3 Geohashing

010101 010111 011101 011111 110101 110111 111101 111111

010100 010110 011100 011110 110100 110110 111100 111110

010001 010011 011001 011011 110001 110011 111001 111011

010000 010010 011000 011010 110000 110010 111000 111010

000101 000111 001101 001111 100101 100111 101101 101111

000100 000110 001100 001110 100100 100110 101100 101110

000001 000011 001001 001011 100001 100011 101001 101011

000000 000010 001000 001010 100000 100010 101000 101010

0
000

1
001

2
010

3
011

4
100

5
101

6
110

7
111

0
000

1
001

2
010

3
011

4
100

5
101

6
110

7
111

Figure 5.3: Geohash

A function that produces geohashes maps a point p to a sequence of bits b that repeatedly bisect

space up to a desired depth d that defines the precision of the geohash [105]. In the case of a

latitude/longitude space, the first subdivision usually occurs on the longitude axis, the second on

the latitude axis and the process is repeated up to depth d. Figure 5.3 illustrates this subdivision

for a depth d = 6, where two interleaved sequences of three bits are respectively dedicated to the

subdivision of the longitude and latitude axes. Every geohash covers a delimited area on earth and,

given a set of points {p1, p2, ..., pn}, it is relatively easy to find the highest precision geohash that

overlaps with the whole set. Hereafter, we formally refer to such an overlapping geohash with the

function geohash({p1, p2, ..., pn}) = b.

89

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

Figure 5.4: Space-filling Curve

As highlighted in Figure 5.4, the ordered list of hashes obtained by subdividing the space with

a geohash function can be represented as a z-order space-filling curve. Interestingly, when two

points are close to each other on a space-filling curve, then they are close to each other in the

latitude/longitude space. However, the reverse is not necessarily true since: two points near each

other in the latitude/longitude space might be far from each other on the space-filling curve.

90

geohash
<latexit sha1_base64="dMVwjTywUyfypr8B6rbpGY4ys9I=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSQiqLeiF48VjC20oWy2k2bpZjfsboQS+iO8eFDx6v/x5r9x2+ag1QcDj/dmmJkXZZxp43lfTmVldW19o7pZ29re2d2r7x88aJkrigGVXKpuRDRyJjAwzHDsZgpJGnHsROObmd95RKWZFPdmkmGYkpFgMaPEWKkzQpkQnQzqDa/pzeH+JX5JGlCiPah/9oeS5ikKQznRuud7mQkLogyjHKe1fq4xI3RMRtizVJAUdVjMz526J1YZurFUtoRx5+rPiYKkWk/SyHamxCR62ZuJ/3m93MSXYcFElhsUdLEozrlrpDv73R0yhdTwiSWEKmZvdWlCFKHGJlSzIfjLL/8lwVnzqundnTda12UaVTiCYzgFHy6gBbfQhgAojOEJXuDVyZxn5815X7RWnHLmEH7B+fgG3DqPcg==</latexit><latexit sha1_base64="dMVwjTywUyfypr8B6rbpGY4ys9I=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSQiqLeiF48VjC20oWy2k2bpZjfsboQS+iO8eFDx6v/x5r9x2+ag1QcDj/dmmJkXZZxp43lfTmVldW19o7pZ29re2d2r7x88aJkrigGVXKpuRDRyJjAwzHDsZgpJGnHsROObmd95RKWZFPdmkmGYkpFgMaPEWKkzQpkQnQzqDa/pzeH+JX5JGlCiPah/9oeS5ikKQznRuud7mQkLogyjHKe1fq4xI3RMRtizVJAUdVjMz526J1YZurFUtoRx5+rPiYKkWk/SyHamxCR62ZuJ/3m93MSXYcFElhsUdLEozrlrpDv73R0yhdTwiSWEKmZvdWlCFKHGJlSzIfjLL/8lwVnzqundnTda12UaVTiCYzgFHy6gBbfQhgAojOEJXuDVyZxn5815X7RWnHLmEH7B+fgG3DqPcg==</latexit><latexit sha1_base64="dMVwjTywUyfypr8B6rbpGY4ys9I=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSQiqLeiF48VjC20oWy2k2bpZjfsboQS+iO8eFDx6v/x5r9x2+ag1QcDj/dmmJkXZZxp43lfTmVldW19o7pZ29re2d2r7x88aJkrigGVXKpuRDRyJjAwzHDsZgpJGnHsROObmd95RKWZFPdmkmGYkpFgMaPEWKkzQpkQnQzqDa/pzeH+JX5JGlCiPah/9oeS5ikKQznRuud7mQkLogyjHKe1fq4xI3RMRtizVJAUdVjMz526J1YZurFUtoRx5+rPiYKkWk/SyHamxCR62ZuJ/3m93MSXYcFElhsUdLEozrlrpDv73R0yhdTwiSWEKmZvdWlCFKHGJlSzIfjLL/8lwVnzqundnTda12UaVTiCYzgFHy6gBbfQhgAojOEJXuDVyZxn5815X7RWnHLmEH7B+fgG3DqPcg==</latexit><latexit sha1_base64="C39OhB+IczRcjLNINXH29e9lt8M=">AAAB2HicbZDNSgMxFIXv1L86Vq1rN8EiuCpTN+pOcOOygmML7VAymTttaCYzJHeEMvQFXLhRfDB3vo3pz0KtBwIf5yTk3hMXSloKgi+vtrW9s7tX3/cPGv7h0XGz8WTz0ggMRa5y04+5RSU1hiRJYb8wyLNYYS+e3i3y3jMaK3P9SLMCo4yPtUyl4OSs7qjZCtrBUmwTOmtowVqj5ucwyUWZoSahuLWDTlBQVHFDUiic+8PSYsHFlI9x4FDzDG1ULcecs3PnJCzNjTua2NL9+aLimbWzLHY3M04T+zdbmP9lg5LS66iSuigJtVh9lJaKUc4WO7NEGhSkZg64MNLNysSEGy7INeO7Djp/N96E8LJ90w4eAqjDKZzBBXTgCm7hHroQgoAEXuDNm3iv3vuqqpq37uwEfsn7+Aap5IoM</latexit><latexit sha1_base64="7C+4wWDeG6sM2GD250kxPxekj84=">AAAB4nicbZDNSgMxFIXv1L9aq1a3boJFcFVm3Gh3ghuXFRxbaIeSSe90QjPJkGSEMvQh3LhQ8aHc+TamPwttPRD4OCch9544F9xY3//2KlvbO7t71f3aQf3w6LhxUn8yqtAMQ6aE0r2YGhRcYmi5FdjLNdIsFtiNJ3fzvPuM2nAlH+00xyijY8kTzqh1VneMKqUmHTaafstfiGxCsIImrNQZNr4GI8WKDKVlghrTD/zcRiXVljOBs9qgMJhTNqFj7DuUNEMTlYtxZ+TCOSOSKO2OtGTh/n5R0syYaRa7mxm1qVnP5uZ/Wb+wyU1UcpkXFiVbfpQUglhF5ruTEdfIrJg6oExzNythKdWUWddQzZUQrK+8CeFVq93yH3yowhmcwyUEcA23cA8dCIHBBF7gDd693Hv1PpZtVbxVbafwR97nD62ejho=</latexit><latexit sha1_base64="7C+4wWDeG6sM2GD250kxPxekj84=">AAAB4nicbZDNSgMxFIXv1L9aq1a3boJFcFVm3Gh3ghuXFRxbaIeSSe90QjPJkGSEMvQh3LhQ8aHc+TamPwttPRD4OCch9544F9xY3//2KlvbO7t71f3aQf3w6LhxUn8yqtAMQ6aE0r2YGhRcYmi5FdjLNdIsFtiNJ3fzvPuM2nAlH+00xyijY8kTzqh1VneMKqUmHTaafstfiGxCsIImrNQZNr4GI8WKDKVlghrTD/zcRiXVljOBs9qgMJhTNqFj7DuUNEMTlYtxZ+TCOSOSKO2OtGTh/n5R0syYaRa7mxm1qVnP5uZ/Wb+wyU1UcpkXFiVbfpQUglhF5ruTEdfIrJg6oExzNythKdWUWddQzZUQrK+8CeFVq93yH3yowhmcwyUEcA23cA8dCIHBBF7gDd693Hv1PpZtVbxVbafwR97nD62ejho=</latexit><latexit sha1_base64="XOirqvftfsLwjjnWe9FYGL2lX8U=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0m8qLeiF48VjC20oWy2k2bpZhN2N0IJ/RFePKh49f9489+4bXPQ1gcDj/dmmJkXZoJr47rfTmVtfWNzq7pd29nd2z+oHx496jRXDH2WilR1Q6pRcIm+4UZgN1NIk1BgJxzfzvzOEyrNU/lgJhkGCR1JHnFGjZU6I0xjquNBveE23TnIKvFK0oAS7UH9qz9MWZ6gNExQrXuem5mgoMpwJnBa6+caM8rGdIQ9SyVNUAfF/NwpObPKkESpsiUNmau/JwqaaD1JQtuZUBPrZW8m/uf1chNdBQWXWW5QssWiKBfEpGT2OxlyhcyIiSWUKW5vJSymijJjE6rZELzll1eJf9G8brr3bqN1U6ZRhRM4hXPw4BJacAdt8IHBGJ7hFd6czHlx3p2PRWvFKWeO4Q+czx/a+o9u</latexit><latexit sha1_base64="dMVwjTywUyfypr8B6rbpGY4ys9I=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSQiqLeiF48VjC20oWy2k2bpZjfsboQS+iO8eFDx6v/x5r9x2+ag1QcDj/dmmJkXZZxp43lfTmVldW19o7pZ29re2d2r7x88aJkrigGVXKpuRDRyJjAwzHDsZgpJGnHsROObmd95RKWZFPdmkmGYkpFgMaPEWKkzQpkQnQzqDa/pzeH+JX5JGlCiPah/9oeS5ikKQznRuud7mQkLogyjHKe1fq4xI3RMRtizVJAUdVjMz526J1YZurFUtoRx5+rPiYKkWk/SyHamxCR62ZuJ/3m93MSXYcFElhsUdLEozrlrpDv73R0yhdTwiSWEKmZvdWlCFKHGJlSzIfjLL/8lwVnzqundnTda12UaVTiCYzgFHy6gBbfQhgAojOEJXuDVyZxn5815X7RWnHLmEH7B+fgG3DqPcg==</latexit><latexit sha1_base64="dMVwjTywUyfypr8B6rbpGY4ys9I=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSQiqLeiF48VjC20oWy2k2bpZjfsboQS+iO8eFDx6v/x5r9x2+ag1QcDj/dmmJkXZZxp43lfTmVldW19o7pZ29re2d2r7x88aJkrigGVXKpuRDRyJjAwzHDsZgpJGnHsROObmd95RKWZFPdmkmGYkpFgMaPEWKkzQpkQnQzqDa/pzeH+JX5JGlCiPah/9oeS5ikKQznRuud7mQkLogyjHKe1fq4xI3RMRtizVJAUdVjMz526J1YZurFUtoRx5+rPiYKkWk/SyHamxCR62ZuJ/3m93MSXYcFElhsUdLEozrlrpDv73R0yhdTwiSWEKmZvdWlCFKHGJlSzIfjLL/8lwVnzqundnTda12UaVTiCYzgFHy6gBbfQhgAojOEJXuDVyZxn5815X7RWnHLmEH7B+fgG3DqPcg==</latexit><latexit sha1_base64="dMVwjTywUyfypr8B6rbpGY4ys9I=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSQiqLeiF48VjC20oWy2k2bpZjfsboQS+iO8eFDx6v/x5r9x2+ag1QcDj/dmmJkXZZxp43lfTmVldW19o7pZ29re2d2r7x88aJkrigGVXKpuRDRyJjAwzHDsZgpJGnHsROObmd95RKWZFPdmkmGYkpFgMaPEWKkzQpkQnQzqDa/pzeH+JX5JGlCiPah/9oeS5ikKQznRuud7mQkLogyjHKe1fq4xI3RMRtizVJAUdVjMz526J1YZurFUtoRx5+rPiYKkWk/SyHamxCR62ZuJ/3m93MSXYcFElhsUdLEozrlrpDv73R0yhdTwiSWEKmZvdWlCFKHGJlSzIfjLL/8lwVnzqundnTda12UaVTiCYzgFHy6gBbfQhgAojOEJXuDVyZxn5815X7RWnHLmEH7B+fgG3DqPcg==</latexit><latexit sha1_base64="dMVwjTywUyfypr8B6rbpGY4ys9I=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSQiqLeiF48VjC20oWy2k2bpZjfsboQS+iO8eFDx6v/x5r9x2+ag1QcDj/dmmJkXZZxp43lfTmVldW19o7pZ29re2d2r7x88aJkrigGVXKpuRDRyJjAwzHDsZgpJGnHsROObmd95RKWZFPdmkmGYkpFgMaPEWKkzQpkQnQzqDa/pzeH+JX5JGlCiPah/9oeS5ikKQznRuud7mQkLogyjHKe1fq4xI3RMRtizVJAUdVjMz526J1YZurFUtoRx5+rPiYKkWk/SyHamxCR62ZuJ/3m93MSXYcFElhsUdLEozrlrpDv73R0yhdTwiSWEKmZvdWlCFKHGJlSzIfjLL/8lwVnzqundnTda12UaVTiCYzgFHy6gBbfQhgAojOEJXuDVyZxn5815X7RWnHLmEH7B+fgG3DqPcg==</latexit><latexit sha1_base64="dMVwjTywUyfypr8B6rbpGY4ys9I=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSQiqLeiF48VjC20oWy2k2bpZjfsboQS+iO8eFDx6v/x5r9x2+ag1QcDj/dmmJkXZZxp43lfTmVldW19o7pZ29re2d2r7x88aJkrigGVXKpuRDRyJjAwzHDsZgpJGnHsROObmd95RKWZFPdmkmGYkpFgMaPEWKkzQpkQnQzqDa/pzeH+JX5JGlCiPah/9oeS5ikKQznRuud7mQkLogyjHKe1fq4xI3RMRtizVJAUdVjMz526J1YZurFUtoRx5+rPiYKkWk/SyHamxCR62ZuJ/3m93MSXYcFElhsUdLEozrlrpDv73R0yhdTwiSWEKmZvdWlCFKHGJlSzIfjLL/8lwVnzqundnTda12UaVTiCYzgFHy6gBbfQhgAojOEJXuDVyZxn5815X7RWnHLmEH7B+fgG3DqPcg==</latexit>

node = �shard mod n�
<latexit sha1_base64="RnM2WfhQ7+FJvPxrX2G7o/8DQ1I=">AAACDHicbVDLSsNAFJ34rPUVdelmsAquSiKCuhCKblxWsLbQhDKZTNqh8wgzE6GE/oAbf8WNCxW3foA7/8ZpmoW2ntXhnHu5554oZVQbz/t2FhaXlldWK2vV9Y3NrW13Z/dey0xh0sKSSdWJkCaMCtIy1DDSSRVBPGKkHQ2vJ377gShNpbgzo5SEHPUFTShGxko991DImMBLGLCESamgHiAVwyDiMoYCBqpQe27Nq3sF4DzxS1IDJZo99yuIJc44EQYzpHXX91IT5kgZihkZV4NMkxThIeqTrqUCcaLDvPhmDI+sEsPEhkmkMLBQf2/kiGs94pGd5MgM9Kw3Ef/zuplJzsOcijQzRODpoSRj0Eg4qQbGVBFs2MgShBW1WSG2dSBsbIFVW4I/+/I8aZ3UL+re7WmtcVW2UQH74AAcAx+cgQa4AU3QAhg8gmfwCt6cJ+fFeXc+pqMLTrmzB/7A+fwBp7aa4Q==</latexit><latexit sha1_base64="RnM2WfhQ7+FJvPxrX2G7o/8DQ1I=">AAACDHicbVDLSsNAFJ34rPUVdelmsAquSiKCuhCKblxWsLbQhDKZTNqh8wgzE6GE/oAbf8WNCxW3foA7/8ZpmoW2ntXhnHu5554oZVQbz/t2FhaXlldWK2vV9Y3NrW13Z/dey0xh0sKSSdWJkCaMCtIy1DDSSRVBPGKkHQ2vJ377gShNpbgzo5SEHPUFTShGxko991DImMBLGLCESamgHiAVwyDiMoYCBqpQe27Nq3sF4DzxS1IDJZo99yuIJc44EQYzpHXX91IT5kgZihkZV4NMkxThIeqTrqUCcaLDvPhmDI+sEsPEhkmkMLBQf2/kiGs94pGd5MgM9Kw3Ef/zuplJzsOcijQzRODpoSRj0Eg4qQbGVBFs2MgShBW1WSG2dSBsbIFVW4I/+/I8aZ3UL+re7WmtcVW2UQH74AAcAx+cgQa4AU3QAhg8gmfwCt6cJ+fFeXc+pqMLTrmzB/7A+fwBp7aa4Q==</latexit><latexit sha1_base64="RnM2WfhQ7+FJvPxrX2G7o/8DQ1I=">AAACDHicbVDLSsNAFJ34rPUVdelmsAquSiKCuhCKblxWsLbQhDKZTNqh8wgzE6GE/oAbf8WNCxW3foA7/8ZpmoW2ntXhnHu5554oZVQbz/t2FhaXlldWK2vV9Y3NrW13Z/dey0xh0sKSSdWJkCaMCtIy1DDSSRVBPGKkHQ2vJ377gShNpbgzo5SEHPUFTShGxko991DImMBLGLCESamgHiAVwyDiMoYCBqpQe27Nq3sF4DzxS1IDJZo99yuIJc44EQYzpHXX91IT5kgZihkZV4NMkxThIeqTrqUCcaLDvPhmDI+sEsPEhkmkMLBQf2/kiGs94pGd5MgM9Kw3Ef/zuplJzsOcijQzRODpoSRj0Eg4qQbGVBFs2MgShBW1WSG2dSBsbIFVW4I/+/I8aZ3UL+re7WmtcVW2UQH74AAcAx+cgQa4AU3QAhg8gmfwCt6cJ+fFeXc+pqMLTrmzB/7A+fwBp7aa4Q==</latexit><latexit sha1_base64="C39OhB+IczRcjLNINXH29e9lt8M=">AAAB2HicbZDNSgMxFIXv1L86Vq1rN8EiuCpTN+pOcOOygmML7VAymTttaCYzJHeEMvQFXLhRfDB3vo3pz0KtBwIf5yTk3hMXSloKgi+vtrW9s7tX3/cPGv7h0XGz8WTz0ggMRa5y04+5RSU1hiRJYb8wyLNYYS+e3i3y3jMaK3P9SLMCo4yPtUyl4OSs7qjZCtrBUmwTOmtowVqj5ucwyUWZoSahuLWDTlBQVHFDUiic+8PSYsHFlI9x4FDzDG1ULcecs3PnJCzNjTua2NL9+aLimbWzLHY3M04T+zdbmP9lg5LS66iSuigJtVh9lJaKUc4WO7NEGhSkZg64MNLNysSEGy7INeO7Djp/N96E8LJ90w4eAqjDKZzBBXTgCm7hHroQgoAEXuDNm3iv3vuqqpq37uwEfsn7+Aap5IoM</latexit><latexit sha1_base64="13KT1WAG+CewxgfWtzG0LQcy7+g=">AAACAXicbZC9TsMwFIVv+C2lQGBlsShITFXCAgxISCyMRSK0UhNVjuO0Vh07sh2kKuoLsPAqLAyAeAk23gY37QAtZzo651q+94tzzrTxvG9nZXVtfWOztlXfbuzs7rn7jQctC0VoQCSXqhtjTTkTNDDMcNrNFcVZzGknHt1M+84jVZpJcW/GOY0yPBAsZQQbG/XdYyETiq5QyFMupUJ6iFWCwjiTCRIoVFXad5tey6uElo0/N02Yq913v8JEkiKjwhCOte75Xm6iEivDCKeTelhommMywgPas1bgjOqorK6ZoBObJCi1y6RSGFSlv1+UONN6nMV2MsNmqBe7afhf1ytMehGVTOSFoYLMPkoLjoxEUzQoYYoSw8fWYKKY3RURiwMTYwHWLQR/8eRlE5y1LlvenQc1OIQjOAUfzuEabqENARB4ghd4g3fn2Xl1Pma0Vpw5tgP4I+fzBwDnmWo=</latexit><latexit sha1_base64="13KT1WAG+CewxgfWtzG0LQcy7+g=">AAACAXicbZC9TsMwFIVv+C2lQGBlsShITFXCAgxISCyMRSK0UhNVjuO0Vh07sh2kKuoLsPAqLAyAeAk23gY37QAtZzo651q+94tzzrTxvG9nZXVtfWOztlXfbuzs7rn7jQctC0VoQCSXqhtjTTkTNDDMcNrNFcVZzGknHt1M+84jVZpJcW/GOY0yPBAsZQQbG/XdYyETiq5QyFMupUJ6iFWCwjiTCRIoVFXad5tey6uElo0/N02Yq913v8JEkiKjwhCOte75Xm6iEivDCKeTelhommMywgPas1bgjOqorK6ZoBObJCi1y6RSGFSlv1+UONN6nMV2MsNmqBe7afhf1ytMehGVTOSFoYLMPkoLjoxEUzQoYYoSw8fWYKKY3RURiwMTYwHWLQR/8eRlE5y1LlvenQc1OIQjOAUfzuEabqENARB4ghd4g3fn2Xl1Pma0Vpw5tgP4I+fzBwDnmWo=</latexit><latexit sha1_base64="E+DlHOCETmSBQCNFq2X+o3lah6c=">AAACDHicbVC7TsMwFHXKq5RXgJHFoiAxVSkLMCBVsDAWidBKTVQ5jtNa9SOyHaQq6g+w8CssDIBY+QA2/gY3zQAtZzo6517dc0+UMqqN5307laXlldW16nptY3Nre8fd3bvXMlOY+FgyqboR0oRRQXxDDSPdVBHEI0Y60eh66nceiNJUijszTknI0UDQhGJkrNR3j4SMCbyEAUuYlArqIVIxDCIuYyhgoAq179a9hlcALpJmSeqgRLvvfgWxxBknwmCGtO41vdSEOVKGYkYmtSDTJEV4hAakZ6lAnOgwL76ZwGOrxDCxYRIpDCzU3xs54lqPeWQnOTJDPe9Nxf+8XmaS8zCnIs0MEXh2KMkYNBJOq4ExVQQbNrYEYUVtVohtHQgbW2DNltCcf3mR+KeNi4Z369VbV2UbVXAADsEJaIIz0AI3oA18gMEjeAav4M15cl6cd+djNlpxyp198AfO5w+mdprd</latexit><latexit sha1_base64="RnM2WfhQ7+FJvPxrX2G7o/8DQ1I=">AAACDHicbVDLSsNAFJ34rPUVdelmsAquSiKCuhCKblxWsLbQhDKZTNqh8wgzE6GE/oAbf8WNCxW3foA7/8ZpmoW2ntXhnHu5554oZVQbz/t2FhaXlldWK2vV9Y3NrW13Z/dey0xh0sKSSdWJkCaMCtIy1DDSSRVBPGKkHQ2vJ377gShNpbgzo5SEHPUFTShGxko991DImMBLGLCESamgHiAVwyDiMoYCBqpQe27Nq3sF4DzxS1IDJZo99yuIJc44EQYzpHXX91IT5kgZihkZV4NMkxThIeqTrqUCcaLDvPhmDI+sEsPEhkmkMLBQf2/kiGs94pGd5MgM9Kw3Ef/zuplJzsOcijQzRODpoSRj0Eg4qQbGVBFs2MgShBW1WSG2dSBsbIFVW4I/+/I8aZ3UL+re7WmtcVW2UQH74AAcAx+cgQa4AU3QAhg8gmfwCt6cJ+fFeXc+pqMLTrmzB/7A+fwBp7aa4Q==</latexit><latexit sha1_base64="RnM2WfhQ7+FJvPxrX2G7o/8DQ1I=">AAACDHicbVDLSsNAFJ34rPUVdelmsAquSiKCuhCKblxWsLbQhDKZTNqh8wgzE6GE/oAbf8WNCxW3foA7/8ZpmoW2ntXhnHu5554oZVQbz/t2FhaXlldWK2vV9Y3NrW13Z/dey0xh0sKSSdWJkCaMCtIy1DDSSRVBPGKkHQ2vJ377gShNpbgzo5SEHPUFTShGxko991DImMBLGLCESamgHiAVwyDiMoYCBqpQe27Nq3sF4DzxS1IDJZo99yuIJc44EQYzpHXX91IT5kgZihkZV4NMkxThIeqTrqUCcaLDvPhmDI+sEsPEhkmkMLBQf2/kiGs94pGd5MgM9Kw3Ef/zuplJzsOcijQzRODpoSRj0Eg4qQbGVBFs2MgShBW1WSG2dSBsbIFVW4I/+/I8aZ3UL+re7WmtcVW2UQH74AAcAx+cgQa4AU3QAhg8gmfwCt6cJ+fFeXc+pqMLTrmzB/7A+fwBp7aa4Q==</latexit><latexit sha1_base64="RnM2WfhQ7+FJvPxrX2G7o/8DQ1I=">AAACDHicbVDLSsNAFJ34rPUVdelmsAquSiKCuhCKblxWsLbQhDKZTNqh8wgzE6GE/oAbf8WNCxW3foA7/8ZpmoW2ntXhnHu5554oZVQbz/t2FhaXlldWK2vV9Y3NrW13Z/dey0xh0sKSSdWJkCaMCtIy1DDSSRVBPGKkHQ2vJ377gShNpbgzo5SEHPUFTShGxko991DImMBLGLCESamgHiAVwyDiMoYCBqpQe27Nq3sF4DzxS1IDJZo99yuIJc44EQYzpHXX91IT5kgZihkZV4NMkxThIeqTrqUCcaLDvPhmDI+sEsPEhkmkMLBQf2/kiGs94pGd5MgM9Kw3Ef/zuplJzsOcijQzRODpoSRj0Eg4qQbGVBFs2MgShBW1WSG2dSBsbIFVW4I/+/I8aZ3UL+re7WmtcVW2UQH74AAcAx+cgQa4AU3QAhg8gmfwCt6cJ+fFeXc+pqMLTrmzB/7A+fwBp7aa4Q==</latexit><latexit sha1_base64="RnM2WfhQ7+FJvPxrX2G7o/8DQ1I=">AAACDHicbVDLSsNAFJ34rPUVdelmsAquSiKCuhCKblxWsLbQhDKZTNqh8wgzE6GE/oAbf8WNCxW3foA7/8ZpmoW2ntXhnHu5554oZVQbz/t2FhaXlldWK2vV9Y3NrW13Z/dey0xh0sKSSdWJkCaMCtIy1DDSSRVBPGKkHQ2vJ377gShNpbgzo5SEHPUFTShGxko991DImMBLGLCESamgHiAVwyDiMoYCBqpQe27Nq3sF4DzxS1IDJZo99yuIJc44EQYzpHXX91IT5kgZihkZV4NMkxThIeqTrqUCcaLDvPhmDI+sEsPEhkmkMLBQf2/kiGs94pGd5MgM9Kw3Ef/zuplJzsOcijQzRODpoSRj0Eg4qQbGVBFs2MgShBW1WSG2dSBsbIFVW4I/+/I8aZ3UL+re7WmtcVW2UQH74AAcAx+cgQa4AU3QAhg8gmfwCt6cJ+fFeXc+pqMLTrmzB/7A+fwBp7aa4Q==</latexit><latexit sha1_base64="RnM2WfhQ7+FJvPxrX2G7o/8DQ1I=">AAACDHicbVDLSsNAFJ34rPUVdelmsAquSiKCuhCKblxWsLbQhDKZTNqh8wgzE6GE/oAbf8WNCxW3foA7/8ZpmoW2ntXhnHu5554oZVQbz/t2FhaXlldWK2vV9Y3NrW13Z/dey0xh0sKSSdWJkCaMCtIy1DDSSRVBPGKkHQ2vJ377gShNpbgzo5SEHPUFTShGxko991DImMBLGLCESamgHiAVwyDiMoYCBqpQe27Nq3sF4DzxS1IDJZo99yuIJc44EQYzpHXX91IT5kgZihkZV4NMkxThIeqTrqUCcaLDvPhmDI+sEsPEhkmkMLBQf2/kiGs94pGd5MgM9Kw3Ef/zuplJzsOcijQzRODpoSRj0Eg4qQbGVBFs2MgShBW1WSG2dSBsbIFVW4I/+/I8aZ3UL+re7WmtcVW2UQH74AAcAx+cgQa4AU3QAhg8gmfwCt6cJ+fFeXc+pqMLTrmzB/7A+fwBp7aa4Q==</latexit>

shard = �geohash/26 ⇤ s�
<latexit sha1_base64="OfbobdSdEJPuarxeHVokmqdUXjY=">AAACFHicbVC7SgNBFJ2Nrxhfq5Y2F4MgInE3iI9CCNpYRjAmkF3D7GQ2GTK7s8zMCmHJT9j4KzYWKrYWdv6Nk0ehiac6nHMv99wTJJwp7TjfVm5ufmFxKb9cWFldW9+wN7fulEgloTUiuJCNACvKWUxrmmlOG4mkOAo4rQe9q6Fff6BSMRHf6n5C/Qh3YhYygrWRWvah6mLZhgsAj4dcCAkdKrpYdeEIyvfZyQAOQIEnR17LLjolZwSYJe6EFNEE1Zb95bUFSSMaa8KxUk3XSbSfYakZ4XRQ8FJFE0x6uEObhsY4osrPRl8NYM8obQhNpFDEGkbq740MR0r1o8BMRlh31bQ3FP/zmqkOz/yMxUmqaUzGh8KUgxYwrAjaTFKied8QTCQzWYGYljDRpsiCKcGdfnmW1Mql85Jzc1ysXE7ayKMdtIv2kYtOUQVdoyqqIYIe0TN6RW/Wk/VivVsf49GcNdnZRn9gff4Ax6Wc6A==</latexit><latexit sha1_base64="OfbobdSdEJPuarxeHVokmqdUXjY=">AAACFHicbVC7SgNBFJ2Nrxhfq5Y2F4MgInE3iI9CCNpYRjAmkF3D7GQ2GTK7s8zMCmHJT9j4KzYWKrYWdv6Nk0ehiac6nHMv99wTJJwp7TjfVm5ufmFxKb9cWFldW9+wN7fulEgloTUiuJCNACvKWUxrmmlOG4mkOAo4rQe9q6Fff6BSMRHf6n5C/Qh3YhYygrWRWvah6mLZhgsAj4dcCAkdKrpYdeEIyvfZyQAOQIEnR17LLjolZwSYJe6EFNEE1Zb95bUFSSMaa8KxUk3XSbSfYakZ4XRQ8FJFE0x6uEObhsY4osrPRl8NYM8obQhNpFDEGkbq740MR0r1o8BMRlh31bQ3FP/zmqkOz/yMxUmqaUzGh8KUgxYwrAjaTFKied8QTCQzWYGYljDRpsiCKcGdfnmW1Mql85Jzc1ysXE7ayKMdtIv2kYtOUQVdoyqqIYIe0TN6RW/Wk/VivVsf49GcNdnZRn9gff4Ax6Wc6A==</latexit><latexit sha1_base64="OfbobdSdEJPuarxeHVokmqdUXjY=">AAACFHicbVC7SgNBFJ2Nrxhfq5Y2F4MgInE3iI9CCNpYRjAmkF3D7GQ2GTK7s8zMCmHJT9j4KzYWKrYWdv6Nk0ehiac6nHMv99wTJJwp7TjfVm5ufmFxKb9cWFldW9+wN7fulEgloTUiuJCNACvKWUxrmmlOG4mkOAo4rQe9q6Fff6BSMRHf6n5C/Qh3YhYygrWRWvah6mLZhgsAj4dcCAkdKrpYdeEIyvfZyQAOQIEnR17LLjolZwSYJe6EFNEE1Zb95bUFSSMaa8KxUk3XSbSfYakZ4XRQ8FJFE0x6uEObhsY4osrPRl8NYM8obQhNpFDEGkbq740MR0r1o8BMRlh31bQ3FP/zmqkOz/yMxUmqaUzGh8KUgxYwrAjaTFKied8QTCQzWYGYljDRpsiCKcGdfnmW1Mql85Jzc1ysXE7ayKMdtIv2kYtOUQVdoyqqIYIe0TN6RW/Wk/VivVsf49GcNdnZRn9gff4Ax6Wc6A==</latexit>

26
<latexit sha1_base64="WgWzGmXo0AyT24n3xmI005paXmY=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4KkkRP25FLx4rGltoY9lsN+3SzSbsToRS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTKUw6LrfztLyyuraemGjuLm1vbNb2tt/MEmmGfdZIhPdDKnhUijuo0DJm6nmNA4lb4SD64nfeOLaiETd4zDlQUx7SkSCUbTSXfXxrFMquxV3CrJIvJyUIUe9U/pqdxOWxVwhk9SYluemGIyoRsEkHxfbmeEpZQPa4y1LFY25CUbTU8fk2CpdEiXalkIyVX9PjGhszDAObWdMsW/mvYn4n9fKMLoIRkKlGXLFZouiTBJMyORv0hWaM5RDSyjTwt5KWJ9qytCmU7QhePMvLxK/WrmsuLen5dpVnkYBDuEITsCDc6jBDdTBBwY9eIZXeHOk8+K8Ox+z1iUnnzmAP3A+fwAU0I0x</latexit><latexit sha1_base64="WgWzGmXo0AyT24n3xmI005paXmY=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4KkkRP25FLx4rGltoY9lsN+3SzSbsToRS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTKUw6LrfztLyyuraemGjuLm1vbNb2tt/MEmmGfdZIhPdDKnhUijuo0DJm6nmNA4lb4SD64nfeOLaiETd4zDlQUx7SkSCUbTSXfXxrFMquxV3CrJIvJyUIUe9U/pqdxOWxVwhk9SYluemGIyoRsEkHxfbmeEpZQPa4y1LFY25CUbTU8fk2CpdEiXalkIyVX9PjGhszDAObWdMsW/mvYn4n9fKMLoIRkKlGXLFZouiTBJMyORv0hWaM5RDSyjTwt5KWJ9qytCmU7QhePMvLxK/WrmsuLen5dpVnkYBDuEITsCDc6jBDdTBBwY9eIZXeHOk8+K8Ox+z1iUnnzmAP3A+fwAU0I0x</latexit><latexit sha1_base64="WgWzGmXo0AyT24n3xmI005paXmY=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4KkkRP25FLx4rGltoY9lsN+3SzSbsToRS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTKUw6LrfztLyyuraemGjuLm1vbNb2tt/MEmmGfdZIhPdDKnhUijuo0DJm6nmNA4lb4SD64nfeOLaiETd4zDlQUx7SkSCUbTSXfXxrFMquxV3CrJIvJyUIUe9U/pqdxOWxVwhk9SYluemGIyoRsEkHxfbmeEpZQPa4y1LFY25CUbTU8fk2CpdEiXalkIyVX9PjGhszDAObWdMsW/mvYn4n9fKMLoIRkKlGXLFZouiTBJMyORv0hWaM5RDSyjTwt5KWJ9qytCmU7QhePMvLxK/WrmsuLen5dpVnkYBDuEITsCDc6jBDdTBBwY9eIZXeHOk8+K8Ox+z1iUnnzmAP3A+fwAU0I0x</latexit>

0
<latexit sha1_base64="DfemnTLialK+ve98TKLnkz30pz8=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWabq9SdWvuDGSZeAWpQoFGr/LV7Scsi1EaJqjWHc9NTZBTZTgTOCl3M40pZSM6wI6lksaog3x26IScWqVPokTZkobM1N8TOY21Hseh7YypGepFbyr+53UyE10FOZdpZlCy+aIoE8QkZPo16XOFzIixJZQpbm8lbEgVZcZmU7YheIsvLxP/vHZdc5sX1fpNkUYJjuEEzsCDS6jDHTTABwYIz/AKb86j8+K8Ox/z1hWnmDmCP3A+fwDnZoyH</latexit><latexit sha1_base64="DfemnTLialK+ve98TKLnkz30pz8=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWabq9SdWvuDGSZeAWpQoFGr/LV7Scsi1EaJqjWHc9NTZBTZTgTOCl3M40pZSM6wI6lksaog3x26IScWqVPokTZkobM1N8TOY21Hseh7YypGepFbyr+53UyE10FOZdpZlCy+aIoE8QkZPo16XOFzIixJZQpbm8lbEgVZcZmU7YheIsvLxP/vHZdc5sX1fpNkUYJjuEEzsCDS6jDHTTABwYIz/AKb86j8+K8Ox/z1hWnmDmCP3A+fwDnZoyH</latexit><latexit sha1_base64="DfemnTLialK+ve98TKLnkz30pz8=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWabq9SdWvuDGSZeAWpQoFGr/LV7Scsi1EaJqjWHc9NTZBTZTgTOCl3M40pZSM6wI6lksaog3x26IScWqVPokTZkobM1N8TOY21Hseh7YypGepFbyr+53UyE10FOZdpZlCy+aIoE8QkZPo16XOFzIixJZQpbm8lbEgVZcZmU7YheIsvLxP/vHZdc5sX1fpNkUYJjuEEzsCDS6jDHTTABwYIz/AKb86j8+K8Ox/z1hWnmDmCP3A+fwDnZoyH</latexit>

s
<latexit sha1_base64="iZJDFbyK+QG96URJp2fUvksDVbk=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWaulepujV3BrJMvIJUoUCjV/nq9hOWxSgNE1TrjuemJsipMpwJnJS7mcaUshEdYMdSSWPUQT47dEJOrdInUaJsSUNm6u+JnMZaj+PQdsbUDPWiNxX/8zqZia6CnMs0MyjZfFGUCWISMv2a9LlCZsTYEsoUt7cSNqSKMmOzKdsQvMWXl4l/Xruuuc2Lav2mSKMEx3ACZ+DBJdThDhrgAwOEZ3iFN+fReXHenY9564pTzBzBHzifP0y+jMo=</latexit><latexit sha1_base64="iZJDFbyK+QG96URJp2fUvksDVbk=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWaulepujV3BrJMvIJUoUCjV/nq9hOWxSgNE1TrjuemJsipMpwJnJS7mcaUshEdYMdSSWPUQT47dEJOrdInUaJsSUNm6u+JnMZaj+PQdsbUDPWiNxX/8zqZia6CnMs0MyjZfFGUCWISMv2a9LlCZsTYEsoUt7cSNqSKMmOzKdsQvMWXl4l/Xruuuc2Lav2mSKMEx3ACZ+DBJdThDhrgAwOEZ3iFN+fReXHenY9564pTzBzBHzifP0y+jMo=</latexit><latexit sha1_base64="iZJDFbyK+QG96URJp2fUvksDVbk=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWaulepujV3BrJMvIJUoUCjV/nq9hOWxSgNE1TrjuemJsipMpwJnJS7mcaUshEdYMdSSWPUQT47dEJOrdInUaJsSUNm6u+JnMZaj+PQdsbUDPWiNxX/8zqZia6CnMs0MyjZfFGUCWISMv2a9LlCZsTYEsoUt7cSNqSKMmOzKdsQvMWXl4l/Xruuuc2Lav2mSKMEx3ACZ+DBJdThDhrgAwOEZ3iFN+fReXHenY9564pTzBzBHzifP0y+jMo=</latexit>

n
<latexit sha1_base64="WJRcnYIeSIi725K1oHuE9EYFJ4Q=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWaslepujV3BrJMvIJUoUCjV/nq9hOWxSgNE1TrjuemJsipMpwJnJS7mcaUshEdYMdSSWPUQT47dEJOrdInUaJsSUNm6u+JnMZaj+PQdsbUDPWiNxX/8zqZia6CnMs0MyjZfFGUCWISMv2a9LlCZsTYEsoUt7cSNqSKMmOzKdsQvMWXl4l/Xruuuc2Lav2mSKMEx3ACZ+DBJdThDhrgAwOEZ3iFN+fReXHenY9564pTzBzBHzifP0UvjMU=</latexit><latexit sha1_base64="WJRcnYIeSIi725K1oHuE9EYFJ4Q=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWaslepujV3BrJMvIJUoUCjV/nq9hOWxSgNE1TrjuemJsipMpwJnJS7mcaUshEdYMdSSWPUQT47dEJOrdInUaJsSUNm6u+JnMZaj+PQdsbUDPWiNxX/8zqZia6CnMs0MyjZfFGUCWISMv2a9LlCZsTYEsoUt7cSNqSKMmOzKdsQvMWXl4l/Xruuuc2Lav2mSKMEx3ACZ+DBJdThDhrgAwOEZ3iFN+fReXHenY9564pTzBzBHzifP0UvjMU=</latexit><latexit sha1_base64="WJRcnYIeSIi725K1oHuE9EYFJ4Q=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWaslepujV3BrJMvIJUoUCjV/nq9hOWxSgNE1TrjuemJsipMpwJnJS7mcaUshEdYMdSSWPUQT47dEJOrdInUaJsSUNm6u+JnMZaj+PQdsbUDPWiNxX/8zqZia6CnMs0MyjZfFGUCWISMv2a9LlCZsTYEsoUt7cSNqSKMmOzKdsQvMWXl4l/Xruuuc2Lav2mSKMEx3ACZ+DBJdThDhrgAwOEZ3iFN+fReXHenY9564pTzBzBHzifP0UvjMU=</latexit>

0
<latexit sha1_base64="DfemnTLialK+ve98TKLnkz30pz8=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWabq9SdWvuDGSZeAWpQoFGr/LV7Scsi1EaJqjWHc9NTZBTZTgTOCl3M40pZSM6wI6lksaog3x26IScWqVPokTZkobM1N8TOY21Hseh7YypGepFbyr+53UyE10FOZdpZlCy+aIoE8QkZPo16XOFzIixJZQpbm8lbEgVZcZmU7YheIsvLxP/vHZdc5sX1fpNkUYJjuEEzsCDS6jDHTTABwYIz/AKb86j8+K8Ox/z1hWnmDmCP3A+fwDnZoyH</latexit><latexit sha1_base64="DfemnTLialK+ve98TKLnkz30pz8=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWabq9SdWvuDGSZeAWpQoFGr/LV7Scsi1EaJqjWHc9NTZBTZTgTOCl3M40pZSM6wI6lksaog3x26IScWqVPokTZkobM1N8TOY21Hseh7YypGepFbyr+53UyE10FOZdpZlCy+aIoE8QkZPo16XOFzIixJZQpbm8lbEgVZcZmU7YheIsvLxP/vHZdc5sX1fpNkUYJjuEEzsCDS6jDHTTABwYIz/AKb86j8+K8Ox/z1hWnmDmCP3A+fwDnZoyH</latexit><latexit sha1_base64="DfemnTLialK+ve98TKLnkz30pz8=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWabq9SdWvuDGSZeAWpQoFGr/LV7Scsi1EaJqjWHc9NTZBTZTgTOCl3M40pZSM6wI6lksaog3x26IScWqVPokTZkobM1N8TOY21Hseh7YypGepFbyr+53UyE10FOZdpZlCy+aIoE8QkZPo16XOFzIixJZQpbm8lbEgVZcZmU7YheIsvLxP/vHZdc5sX1fpNkUYJjuEEzsCDS6jDHTTABwYIz/AKb86j8+K8Ox/z1hWnmDmCP3A+fwDnZoyH</latexit>

0
<latexit sha1_base64="DfemnTLialK+ve98TKLnkz30pz8=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWabq9SdWvuDGSZeAWpQoFGr/LV7Scsi1EaJqjWHc9NTZBTZTgTOCl3M40pZSM6wI6lksaog3x26IScWqVPokTZkobM1N8TOY21Hseh7YypGepFbyr+53UyE10FOZdpZlCy+aIoE8QkZPo16XOFzIixJZQpbm8lbEgVZcZmU7YheIsvLxP/vHZdc5sX1fpNkUYJjuEEzsCDS6jDHTTABwYIz/AKb86j8+K8Ox/z1hWnmDmCP3A+fwDnZoyH</latexit><latexit sha1_base64="DfemnTLialK+ve98TKLnkz30pz8=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWabq9SdWvuDGSZeAWpQoFGr/LV7Scsi1EaJqjWHc9NTZBTZTgTOCl3M40pZSM6wI6lksaog3x26IScWqVPokTZkobM1N8TOY21Hseh7YypGepFbyr+53UyE10FOZdpZlCy+aIoE8QkZPo16XOFzIixJZQpbm8lbEgVZcZmU7YheIsvLxP/vHZdc5sX1fpNkUYJjuEEzsCDS6jDHTTABwYIz/AKb86j8+K8Ox/z1hWnmDmCP3A+fwDnZoyH</latexit><latexit sha1_base64="DfemnTLialK+ve98TKLnkz30pz8=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWabq9SdWvuDGSZeAWpQoFGr/LV7Scsi1EaJqjWHc9NTZBTZTgTOCl3M40pZSM6wI6lksaog3x26IScWqVPokTZkobM1N8TOY21Hseh7YypGepFbyr+53UyE10FOZdpZlCy+aIoE8QkZPo16XOFzIixJZQpbm8lbEgVZcZmU7YheIsvLxP/vHZdc5sX1fpNkUYJjuEEzsCDS6jDHTTABwYIz/AKb86j8+K8Ox/z1hWnmDmCP3A+fwDnZoyH</latexit>

Figure 5.5: Sharding

Then, as illustrated in Figure 5.5, the space-filling curve can be used to shard a spatial index

across the nodes of a cluster. Two steps characterize the sharding strategy pictured here. First,

geohashes are mapped to shards in a locality preserving way, i.e., geohashes near each other on the

space-filling curve are placed on the same shard. Second, the shards are mapped to nodes with a

modulo operation that breaks locality to improve the balance of the index across the nodes.

5.4 Fingerprinting with Geodabs

We now introduce geodabs, a construction that combines geohashing and hashing to fingerprint

trajectories. Our motivation for introducing geodabs is based on two key reasons. First, as illus-

trated in Figures 5.4, the correspondence between the distance on the space-filling curve and the

latitude/longitude space can be used as a means to shard and distribute the index. Sharding with

geohash on the space-filling curve guarantees that the locality of the index will be preserved and

that a minimal number of shards will be contacted to answer a query. Second, the fingerprints of

a trajectory should capture the notion of order present in trajectories. Given a sequence of points,

geohashes only capture the area that overlap with these points. Therefore, we use regular hashing

to address this issue.

91

(a) geohash(points) = 11010010001110101011100101110000

(b) hash(points) = 10000110101111011011111100101000

(c) geodab(points) = geohash(points) << 16 | hash(points) & 0xffff

Figure 5.6: Construction of a geodab

Figure 5.6 illustrates how geodabs are constructed. (a) Given a sequence of points, we first

compute the geohash that overlaps with the whole sequence. The geohash acts as a prefix that

naturally distributes the geodabs on the space-filling curve according to the location of the points.

(b) We compute a hash that is sensitive to the ordering of the points. This hash acts as a suffix for

the geodab that discriminates among sequences of points, according to their path and their ordering.

(c) We merge the two hashes, here encoded on 32 bits, using bitwise operators. The length of the

prefix can easily be adjusted, depending on the desired space partitioning.

5.4.1 Trajectory Fingerprinting and Indexing

When comparing sequences, finding similarities by sampling fingerprints is probabilistic and does

not guarantee the detection of all the similarities. Winnowing is a special fingerprinting algorithm

that address this problem and comes with additional guarantees [115]. First, it ensures that matches

shorter than a user defined lower-bound k are considered as noise. To satisfy this guarantee, win-

nowing only considers hashes of k-grams. Second, it ensures that at least one k-gram is detected in

any common sequence of size greater or equal to an upper-bound t � k. To satisfy this guarantee,

the algorithm defines a window of size w = t�k+1 that slides over the sequence of k-gram hashes.

For each window, the algorithm selects the minimum hash value or the right-most minimum hash

value if the same hash appears more than once in the window. As the dataset densifies, the upper

threshold can be used to reduce the number of fingerprints extracted from queries in order to set the

efficiency/effectiveness tradeoff.

Figure 5.7 shows how the steps described in [115] can be adapted to extract fingerprints from tra-

jectories. (a) The raw trajectories can showcase different sampling rates, (b) it is therefore necessary

to normalize them. In Section 5.5, we discuss how normalization can be used to make trajectories

92

(a) Raw trajectory:

(b) Normalized trajectory:

(c) Sequence of k-grams based on the normalized trajectory (k=5):
((p1, p2, p3, p4, p5), (p2, p3, p4, p5, p6), (p3, p4, p5, p6, p7), ...

..., (p32, p33, p34, p35, p36))

S� = (p1, p2, p3, ..., p36)
<latexit sha1_base64="FqBmnb++e24RT8Bsgm+qvZFANRA=">AAACDHicbVDLSgMxFL3js9ZX1aWbYBErlGGmiroRim5cVrQPaIeSSTNtaOZBkhHKMB/gxl9x40IRt36AO//GdNqFtl7I5XDOudzc40acSWVZ38bC4tLyympuLb++sbm1XdjZbcgwFoTWSchD0XKxpJwFtK6Y4rQVCYp9l9OmO7we680HKiQLg3s1iqjj437APEaw0lS3ULw7QpeoFHUTOy3rXsn6SVo2TTNDZ+mxdlmmlRWaB/YUFGFatW7hq9MLSezTQBGOpWzbVqScBAvFCKdpvhNLGmEyxH3a1jDAPpVOkh2TokPN9JAXCv0ChTL290SCfSlHvqudPlYDOauNyf+0dqy8CydhQRQrGpDJIi/mSIVonAzqMUGJ4iMNMBFM/xWRARaYKJ1fXodgz548DxoV07ZM+/a0WL2axpGDfTiAEthwDlW4gRrUgcAjPMMrvBlPxovxbnxMrAvGdGYP/pTx+QNdXpim</latexit><latexit sha1_base64="FqBmnb++e24RT8Bsgm+qvZFANRA=">AAACDHicbVDLSgMxFL3js9ZX1aWbYBErlGGmiroRim5cVrQPaIeSSTNtaOZBkhHKMB/gxl9x40IRt36AO//GdNqFtl7I5XDOudzc40acSWVZ38bC4tLyympuLb++sbm1XdjZbcgwFoTWSchD0XKxpJwFtK6Y4rQVCYp9l9OmO7we680HKiQLg3s1iqjj437APEaw0lS3ULw7QpeoFHUTOy3rXsn6SVo2TTNDZ+mxdlmmlRWaB/YUFGFatW7hq9MLSezTQBGOpWzbVqScBAvFCKdpvhNLGmEyxH3a1jDAPpVOkh2TokPN9JAXCv0ChTL290SCfSlHvqudPlYDOauNyf+0dqy8CydhQRQrGpDJIi/mSIVonAzqMUGJ4iMNMBFM/xWRARaYKJ1fXodgz548DxoV07ZM+/a0WL2axpGDfTiAEthwDlW4gRrUgcAjPMMrvBlPxovxbnxMrAvGdGYP/pTx+QNdXpim</latexit><latexit sha1_base64="FqBmnb++e24RT8Bsgm+qvZFANRA=">AAACDHicbVDLSgMxFL3js9ZX1aWbYBErlGGmiroRim5cVrQPaIeSSTNtaOZBkhHKMB/gxl9x40IRt36AO//GdNqFtl7I5XDOudzc40acSWVZ38bC4tLyympuLb++sbm1XdjZbcgwFoTWSchD0XKxpJwFtK6Y4rQVCYp9l9OmO7we680HKiQLg3s1iqjj437APEaw0lS3ULw7QpeoFHUTOy3rXsn6SVo2TTNDZ+mxdlmmlRWaB/YUFGFatW7hq9MLSezTQBGOpWzbVqScBAvFCKdpvhNLGmEyxH3a1jDAPpVOkh2TokPN9JAXCv0ChTL290SCfSlHvqudPlYDOauNyf+0dqy8CydhQRQrGpDJIi/mSIVonAzqMUGJ4iMNMBFM/xWRARaYKJ1fXodgz548DxoV07ZM+/a0WL2axpGDfTiAEthwDlW4gRrUgcAjPMMrvBlPxovxbnxMrAvGdGYP/pTx+QNdXpim</latexit><latexit sha1_base64="FqBmnb++e24RT8Bsgm+qvZFANRA=">AAACDHicbVDLSgMxFL3js9ZX1aWbYBErlGGmiroRim5cVrQPaIeSSTNtaOZBkhHKMB/gxl9x40IRt36AO//GdNqFtl7I5XDOudzc40acSWVZ38bC4tLyympuLb++sbm1XdjZbcgwFoTWSchD0XKxpJwFtK6Y4rQVCYp9l9OmO7we680HKiQLg3s1iqjj437APEaw0lS3ULw7QpeoFHUTOy3rXsn6SVo2TTNDZ+mxdlmmlRWaB/YUFGFatW7hq9MLSezTQBGOpWzbVqScBAvFCKdpvhNLGmEyxH3a1jDAPpVOkh2TokPN9JAXCv0ChTL290SCfSlHvqudPlYDOauNyf+0dqy8CydhQRQrGpDJIi/mSIVonAzqMUGJ4iMNMBFM/xWRARaYKJ1fXodgz548DxoV07ZM+/a0WL2axpGDfTiAEthwDlW4gRrUgcAjPMMrvBlPxovxbnxMrAvGdGYP/pTx+QNdXpim</latexit>

S = (p1, p2, p3, ..., p97)
<latexit sha1_base64="UItHdZQ54BhFuR3Zy1b4glvGuy8=">AAACC3icbVDLSsNAFJ3UV62vqEs3Q4tQoYSkCtWFUHTjsqJ9QBvCZDpth04ezEyEErJ346+4caGIW3/AnX/jJM1CWw/M5XDOvdy5xw0ZFdI0v7XCyura+kZxs7S1vbO7p+8fdEQQcUzaOGAB77lIEEZ90pZUMtILOUGey0jXnV6nfveBcEED/17OQmJ7aOzTEcVIKsnRy3fwElZDJ7aSmqr1rJ4mNcMwUnbRSE4cvWIaZga4TKycVECOlqN/DYYBjjziS8yQEH3LDKUdIy4pZiQpDSJBQoSnaEz6ivrII8KOs1sSeKyUIRwFXD1fwkz9PREjT4iZ56pOD8mJWPRS8T+vH8nRuR1TP4wk8fF80ShiUAYwDQYOKSdYspkiCHOq/grxBHGEpYqvpEKwFk9eJp26YZmGdXtWaV7lcRTBESiDKrBAAzTBDWiBNsDgETyDV/CmPWkv2rv2MW8taPnMIfgD7fMHAlOYfA==</latexit><latexit sha1_base64="UItHdZQ54BhFuR3Zy1b4glvGuy8=">AAACC3icbVDLSsNAFJ3UV62vqEs3Q4tQoYSkCtWFUHTjsqJ9QBvCZDpth04ezEyEErJ346+4caGIW3/AnX/jJM1CWw/M5XDOvdy5xw0ZFdI0v7XCyura+kZxs7S1vbO7p+8fdEQQcUzaOGAB77lIEEZ90pZUMtILOUGey0jXnV6nfveBcEED/17OQmJ7aOzTEcVIKsnRy3fwElZDJ7aSmqr1rJ4mNcMwUnbRSE4cvWIaZga4TKycVECOlqN/DYYBjjziS8yQEH3LDKUdIy4pZiQpDSJBQoSnaEz6ivrII8KOs1sSeKyUIRwFXD1fwkz9PREjT4iZ56pOD8mJWPRS8T+vH8nRuR1TP4wk8fF80ShiUAYwDQYOKSdYspkiCHOq/grxBHGEpYqvpEKwFk9eJp26YZmGdXtWaV7lcRTBESiDKrBAAzTBDWiBNsDgETyDV/CmPWkv2rv2MW8taPnMIfgD7fMHAlOYfA==</latexit><latexit sha1_base64="UItHdZQ54BhFuR3Zy1b4glvGuy8=">AAACC3icbVDLSsNAFJ3UV62vqEs3Q4tQoYSkCtWFUHTjsqJ9QBvCZDpth04ezEyEErJ346+4caGIW3/AnX/jJM1CWw/M5XDOvdy5xw0ZFdI0v7XCyura+kZxs7S1vbO7p+8fdEQQcUzaOGAB77lIEEZ90pZUMtILOUGey0jXnV6nfveBcEED/17OQmJ7aOzTEcVIKsnRy3fwElZDJ7aSmqr1rJ4mNcMwUnbRSE4cvWIaZga4TKycVECOlqN/DYYBjjziS8yQEH3LDKUdIy4pZiQpDSJBQoSnaEz6ivrII8KOs1sSeKyUIRwFXD1fwkz9PREjT4iZ56pOD8mJWPRS8T+vH8nRuR1TP4wk8fF80ShiUAYwDQYOKSdYspkiCHOq/grxBHGEpYqvpEKwFk9eJp26YZmGdXtWaV7lcRTBESiDKrBAAzTBDWiBNsDgETyDV/CmPWkv2rv2MW8taPnMIfgD7fMHAlOYfA==</latexit><latexit sha1_base64="UItHdZQ54BhFuR3Zy1b4glvGuy8=">AAACC3icbVDLSsNAFJ3UV62vqEs3Q4tQoYSkCtWFUHTjsqJ9QBvCZDpth04ezEyEErJ346+4caGIW3/AnX/jJM1CWw/M5XDOvdy5xw0ZFdI0v7XCyura+kZxs7S1vbO7p+8fdEQQcUzaOGAB77lIEEZ90pZUMtILOUGey0jXnV6nfveBcEED/17OQmJ7aOzTEcVIKsnRy3fwElZDJ7aSmqr1rJ4mNcMwUnbRSE4cvWIaZga4TKycVECOlqN/DYYBjjziS8yQEH3LDKUdIy4pZiQpDSJBQoSnaEz6ivrII8KOs1sSeKyUIRwFXD1fwkz9PREjT4iZ56pOD8mJWPRS8T+vH8nRuR1TP4wk8fF80ShiUAYwDQYOKSdYspkiCHOq/grxBHGEpYqvpEKwFk9eJp26YZmGdXtWaV7lcRTBESiDKrBAAzTBDWiBNsDgETyDV/CmPWkv2rv2MW8taPnMIfgD7fMHAlOYfA==</latexit>

(h1, h2, h3, ..., h32)
<latexit sha1_base64="yg4BvAJ/vPWtrLcHeNp15+kqWxE=">AAACB3icbVDLSsNAFJ3UV62vqEtBBotQoYSkCrosunFZwT6gDWEynbRDJ5MwMxFKyM6Nv+LGhSJu/QV3/o3TNAttPTCXwzn3cuceP2ZUKtv+Nkorq2vrG+XNytb2zu6euX/QkVEiMGnjiEWi5yNJGOWkrahipBcLgkKfka4/uZn53QciJI34vZrGxA3RiNOAYqS05JnHtbGXOlld10Zez7O6ZVk5a2Rnnlm1LTsHXCZOQaqgQMszvwbDCCch4QozJGXfsWPlpkgoihnJKoNEkhjhCRqRvqYchUS6aX5HBk+1MoRBJPTjCubq74kUhVJOQ193hkiN5aI3E//z+okKrtyU8jhRhOP5oiBhUEVwFgocUkGwYlNNEBZU/xXiMRIIKx1dRYfgLJ68TDoNy7Et5+6i2rwu4iiDI3ACasABl6AJbkELtAEGj+AZvII348l4Md6Nj3lryShmDsEfGJ8/1IiXWQ==</latexit><latexit sha1_base64="yg4BvAJ/vPWtrLcHeNp15+kqWxE=">AAACB3icbVDLSsNAFJ3UV62vqEtBBotQoYSkCrosunFZwT6gDWEynbRDJ5MwMxFKyM6Nv+LGhSJu/QV3/o3TNAttPTCXwzn3cuceP2ZUKtv+Nkorq2vrG+XNytb2zu6euX/QkVEiMGnjiEWi5yNJGOWkrahipBcLgkKfka4/uZn53QciJI34vZrGxA3RiNOAYqS05JnHtbGXOlld10Zez7O6ZVk5a2Rnnlm1LTsHXCZOQaqgQMszvwbDCCch4QozJGXfsWPlpkgoihnJKoNEkhjhCRqRvqYchUS6aX5HBk+1MoRBJPTjCubq74kUhVJOQ193hkiN5aI3E//z+okKrtyU8jhRhOP5oiBhUEVwFgocUkGwYlNNEBZU/xXiMRIIKx1dRYfgLJ68TDoNy7Et5+6i2rwu4iiDI3ACasABl6AJbkELtAEGj+AZvII348l4Md6Nj3lryShmDsEfGJ8/1IiXWQ==</latexit><latexit sha1_base64="yg4BvAJ/vPWtrLcHeNp15+kqWxE=">AAACB3icbVDLSsNAFJ3UV62vqEtBBotQoYSkCrosunFZwT6gDWEynbRDJ5MwMxFKyM6Nv+LGhSJu/QV3/o3TNAttPTCXwzn3cuceP2ZUKtv+Nkorq2vrG+XNytb2zu6euX/QkVEiMGnjiEWi5yNJGOWkrahipBcLgkKfka4/uZn53QciJI34vZrGxA3RiNOAYqS05JnHtbGXOlld10Zez7O6ZVk5a2Rnnlm1LTsHXCZOQaqgQMszvwbDCCch4QozJGXfsWPlpkgoihnJKoNEkhjhCRqRvqYchUS6aX5HBk+1MoRBJPTjCubq74kUhVJOQ193hkiN5aI3E//z+okKrtyU8jhRhOP5oiBhUEVwFgocUkGwYlNNEBZU/xXiMRIIKx1dRYfgLJ68TDoNy7Et5+6i2rwu4iiDI3ACasABl6AJbkELtAEGj+AZvII348l4Md6Nj3lryShmDsEfGJ8/1IiXWQ==</latexit><latexit sha1_base64="yg4BvAJ/vPWtrLcHeNp15+kqWxE=">AAACB3icbVDLSsNAFJ3UV62vqEtBBotQoYSkCrosunFZwT6gDWEynbRDJ5MwMxFKyM6Nv+LGhSJu/QV3/o3TNAttPTCXwzn3cuceP2ZUKtv+Nkorq2vrG+XNytb2zu6euX/QkVEiMGnjiEWi5yNJGOWkrahipBcLgkKfka4/uZn53QciJI34vZrGxA3RiNOAYqS05JnHtbGXOlld10Zez7O6ZVk5a2Rnnlm1LTsHXCZOQaqgQMszvwbDCCch4QozJGXfsWPlpkgoihnJKoNEkhjhCRqRvqYchUS6aX5HBk+1MoRBJPTjCubq74kUhVJOQ193hkiN5aI3E//z+okKrtyU8jhRhOP5oiBhUEVwFgocUkGwYlNNEBZU/xXiMRIIKx1dRYfgLJ68TDoNy7Et5+6i2rwu4iiDI3ACasABl6AJbkELtAEGj+AZvII348l4Md6Nj3lryShmDsEfGJ8/1IiXWQ==</latexit>

(e) Windows of geodabs (w=4) with minimal values in bold:

(d) Sequence of geodabs derived from the k-grams:

((h1, h2, h3, h4), (h2, h3, h4, h5), (h3, h4, h5, h6), ...

..., (h29, h30, h31, h32))
<latexit sha1_base64="RcoexXNM092fBFvUYsAVjfxomiE=">AAAClXicfVFdS8MwFE3r15xfcz744EtwCB2M0m5T54Mwp4hvTnBusI6RZpkLph8kqTBK/5G/xjf/jenaBzfFC8k9nHNucnPjhowKaVlfmr62vrG5Vdgu7uzu7R+UDssvIog4Jj0csIAPXCQIoz7pSSoZGYScIM9lpO++3aZ6/51wQQP/Wc5DMvLQq0+nFCOpqHHpwzBm49hOamqvJzXHDdhEzD2VYsU0koXQTKo1439Dup/ntsYSt1pykSibaZrQcYoq1YwVvX6VndmwspT11qgn1eq4VLFMaxHwN7BzUAF5dMelT2cS4MgjvsQMCTG0rVCOYsQlxYwkRScSJET4Db2SoYI+8ogYxYupJvBMMRM4DbhavoQL9mdFjDyRtq2cHpIzsaql5F/aMJLT1iimfhhJ4uPsomnEoAxg+kVwQjnBks0VQJhT1SvEM8QRluoji2oI9uqTf4OXumlbpv3UrLQ7+TgK4AScAgPY4BK0wQPogh7AWllraTdaRz/Wr/U7/T6z6lpecwSWQn/8BsiVxtQ=</latexit><latexit sha1_base64="RcoexXNM092fBFvUYsAVjfxomiE=">AAAClXicfVFdS8MwFE3r15xfcz744EtwCB2M0m5T54Mwp4hvTnBusI6RZpkLph8kqTBK/5G/xjf/jenaBzfFC8k9nHNucnPjhowKaVlfmr62vrG5Vdgu7uzu7R+UDssvIog4Jj0csIAPXCQIoz7pSSoZGYScIM9lpO++3aZ6/51wQQP/Wc5DMvLQq0+nFCOpqHHpwzBm49hOamqvJzXHDdhEzD2VYsU0koXQTKo1439Dup/ntsYSt1pykSibaZrQcYoq1YwVvX6VndmwspT11qgn1eq4VLFMaxHwN7BzUAF5dMelT2cS4MgjvsQMCTG0rVCOYsQlxYwkRScSJET4Db2SoYI+8ogYxYupJvBMMRM4DbhavoQL9mdFjDyRtq2cHpIzsaql5F/aMJLT1iimfhhJ4uPsomnEoAxg+kVwQjnBks0VQJhT1SvEM8QRluoji2oI9uqTf4OXumlbpv3UrLQ7+TgK4AScAgPY4BK0wQPogh7AWllraTdaRz/Wr/U7/T6z6lpecwSWQn/8BsiVxtQ=</latexit><latexit sha1_base64="RcoexXNM092fBFvUYsAVjfxomiE=">AAAClXicfVFdS8MwFE3r15xfcz744EtwCB2M0m5T54Mwp4hvTnBusI6RZpkLph8kqTBK/5G/xjf/jenaBzfFC8k9nHNucnPjhowKaVlfmr62vrG5Vdgu7uzu7R+UDssvIog4Jj0csIAPXCQIoz7pSSoZGYScIM9lpO++3aZ6/51wQQP/Wc5DMvLQq0+nFCOpqHHpwzBm49hOamqvJzXHDdhEzD2VYsU0koXQTKo1439Dup/ntsYSt1pykSibaZrQcYoq1YwVvX6VndmwspT11qgn1eq4VLFMaxHwN7BzUAF5dMelT2cS4MgjvsQMCTG0rVCOYsQlxYwkRScSJET4Db2SoYI+8ogYxYupJvBMMRM4DbhavoQL9mdFjDyRtq2cHpIzsaql5F/aMJLT1iimfhhJ4uPsomnEoAxg+kVwQjnBks0VQJhT1SvEM8QRluoji2oI9uqTf4OXumlbpv3UrLQ7+TgK4AScAgPY4BK0wQPogh7AWllraTdaRz/Wr/U7/T6z6lpecwSWQn/8BsiVxtQ=</latexit><latexit sha1_base64="RcoexXNM092fBFvUYsAVjfxomiE=">AAAClXicfVFdS8MwFE3r15xfcz744EtwCB2M0m5T54Mwp4hvTnBusI6RZpkLph8kqTBK/5G/xjf/jenaBzfFC8k9nHNucnPjhowKaVlfmr62vrG5Vdgu7uzu7R+UDssvIog4Jj0csIAPXCQIoz7pSSoZGYScIM9lpO++3aZ6/51wQQP/Wc5DMvLQq0+nFCOpqHHpwzBm49hOamqvJzXHDdhEzD2VYsU0koXQTKo1439Dup/ntsYSt1pykSibaZrQcYoq1YwVvX6VndmwspT11qgn1eq4VLFMaxHwN7BzUAF5dMelT2cS4MgjvsQMCTG0rVCOYsQlxYwkRScSJET4Db2SoYI+8ogYxYupJvBMMRM4DbhavoQL9mdFjDyRtq2cHpIzsaql5F/aMJLT1iimfhhJ4uPsomnEoAxg+kVwQjnBks0VQJhT1SvEM8QRluoji2oI9uqTf4OXumlbpv3UrLQ7+TgK4AScAgPY4BK0wQPogh7AWllraTdaRz/Wr/U7/T6z6lpecwSWQn/8BsiVxtQ=</latexit>

(f) Hypothetical sequence of geodabs selected by winnowing:

(h3, h6, h10, h12, h16, h19, h22, h26, h29)
<latexit sha1_base64="s4i6zIDi7mLd1EvMaOEDxiBGulw=">AAACJ3icbZDLSsNAFIYn9VbrLerSzWARKkhJoqjdSNGNywr2Am0Ik+mkHTq5MDMRSsjbuPFV3AgqokvfxGmShbYemDk/3zmHmfO7EaNCGsaXVlpaXlldK69XNja3tnf03b2OCGOOSRuHLOQ9FwnCaEDakkpGehEnyHcZ6bqTm1m9+0C4oGFwL6cRsX00CqhHMZIKOfpVbewkp+mJus+z2zTyZOWpgI0sWTm0cmg10mNHrxp1Iwu4KMxCVEERLUd/HQxDHPskkJghIfqmEUk7QVxSzEhaGcSCRAhP0Ij0lQyQT4SdZHum8EiRIfRCrk4gYUZ/TyTIF2Lqu6rTR3Is5msz+F+tH0vv0k5oEMWSBDh/yIsZlCGcmQaHlBMs2VQJhDlVf4V4jDjCUllbUSaY8ysvio5VN426eXdWbV4XdpTBATgENWCCC9AEt6AF2gCDR/AM3sC79qS9aB/aZ95a0oqZffAntO8fQmGjtA==</latexit><latexit sha1_base64="s4i6zIDi7mLd1EvMaOEDxiBGulw=">AAACJ3icbZDLSsNAFIYn9VbrLerSzWARKkhJoqjdSNGNywr2Am0Ik+mkHTq5MDMRSsjbuPFV3AgqokvfxGmShbYemDk/3zmHmfO7EaNCGsaXVlpaXlldK69XNja3tnf03b2OCGOOSRuHLOQ9FwnCaEDakkpGehEnyHcZ6bqTm1m9+0C4oGFwL6cRsX00CqhHMZIKOfpVbewkp+mJus+z2zTyZOWpgI0sWTm0cmg10mNHrxp1Iwu4KMxCVEERLUd/HQxDHPskkJghIfqmEUk7QVxSzEhaGcSCRAhP0Ij0lQyQT4SdZHum8EiRIfRCrk4gYUZ/TyTIF2Lqu6rTR3Is5msz+F+tH0vv0k5oEMWSBDh/yIsZlCGcmQaHlBMs2VQJhDlVf4V4jDjCUllbUSaY8ysvio5VN426eXdWbV4XdpTBATgENWCCC9AEt6AF2gCDR/AM3sC79qS9aB/aZ95a0oqZffAntO8fQmGjtA==</latexit><latexit sha1_base64="s4i6zIDi7mLd1EvMaOEDxiBGulw=">AAACJ3icbZDLSsNAFIYn9VbrLerSzWARKkhJoqjdSNGNywr2Am0Ik+mkHTq5MDMRSsjbuPFV3AgqokvfxGmShbYemDk/3zmHmfO7EaNCGsaXVlpaXlldK69XNja3tnf03b2OCGOOSRuHLOQ9FwnCaEDakkpGehEnyHcZ6bqTm1m9+0C4oGFwL6cRsX00CqhHMZIKOfpVbewkp+mJus+z2zTyZOWpgI0sWTm0cmg10mNHrxp1Iwu4KMxCVEERLUd/HQxDHPskkJghIfqmEUk7QVxSzEhaGcSCRAhP0Ij0lQyQT4SdZHum8EiRIfRCrk4gYUZ/TyTIF2Lqu6rTR3Is5msz+F+tH0vv0k5oEMWSBDh/yIsZlCGcmQaHlBMs2VQJhDlVf4V4jDjCUllbUSaY8ysvio5VN426eXdWbV4XdpTBATgENWCCC9AEt6AF2gCDR/AM3sC79qS9aB/aZ95a0oqZffAntO8fQmGjtA==</latexit><latexit sha1_base64="s4i6zIDi7mLd1EvMaOEDxiBGulw=">AAACJ3icbZDLSsNAFIYn9VbrLerSzWARKkhJoqjdSNGNywr2Am0Ik+mkHTq5MDMRSsjbuPFV3AgqokvfxGmShbYemDk/3zmHmfO7EaNCGsaXVlpaXlldK69XNja3tnf03b2OCGOOSRuHLOQ9FwnCaEDakkpGehEnyHcZ6bqTm1m9+0C4oGFwL6cRsX00CqhHMZIKOfpVbewkp+mJus+z2zTyZOWpgI0sWTm0cmg10mNHrxp1Iwu4KMxCVEERLUd/HQxDHPskkJghIfqmEUk7QVxSzEhaGcSCRAhP0Ij0lQyQT4SdZHum8EiRIfRCrk4gYUZ/TyTIF2Lqu6rTR3Is5msz+F+tH0vv0k5oEMWSBDh/yIsZlCGcmQaHlBMs2VQJhDlVf4V4jDjCUllbUSaY8ysvio5VN426eXdWbV4XdpTBATgENWCCC9AEt6AF2gCDR/AM3sC79qS9aB/aZ95a0oqZffAntO8fQmGjtA==</latexit>

Figure 5.7: Trajectory Winnowing

93

Algorithm 6 Geodabs extraction by winnowing
1: Input: trajectory S, lower-bound t, upper-bound k
2: Output: Geodabs G
3: C (?) . Sequence of candidate hashes
4: for i 1 to |S|� k do . Iterate over k-grams
5: g geodab(Si,i+k) . Compute k-gram geodabs
6: C C k (g) . Add geodabs to candidates

7: G {?} . Set of winnowed geodabs
8: w t� k +1 . Window size
9: for i 1 to |C|�w do . Iterate over windows

10: m i . Initialize minimum geodabs index
11: for j i+1 to i+w do . Iterate over the window
12: if Cj <= Cm then . Select right most minimum
13: m = j . Set new minimum

14: G G[{Cm} . Add minimum to geodabs

15: return G

converge to similar sequences. (c) The sequence of k-grams can then be computed and (d) the cor-

responding hashes can be derived. (e) The sliding window of size w can then be used to (f) select

the hashes that constitute the fingerprints of the trajectory. The resulting fingerprints can then be

used as terms in an inverted index, where posting lists are filled with trajectory identifiers.

Algorithm 6 shows in more detail how winnowing can be implemented for fingerprinting trajec-

tories. An optimised version of this algorithm relies on circular buffers and rolling hash functions

for iterating over k-grams of points and windows of hashes. In contrast with normalized docu-

ments that often contain thousands of words, normalized trajectories are relatively short sequences

of points. As we did not notice a significant performance gain, we dropped this optimization.

In our implementation, we use roaring bitmaps to represent the sets of fingerprints F [92]. Any

set made of integers can be represented with bitmaps. Given two bitmaps, their intersection, union,

or difference can be computed very efficiently with bitwise operations. Roaring bitmaps are fast

memory-efficient bitmaps that outperform most existing techniques. The fingerprints generated

by the trajectory-winnowing algorithm are used as terms in the inverted index. Each entry of the

postings lists contain a reference to the raw trajectory and a reference to the trajectory bitmap. As a

result, when querying the index, the bitmap of the query can be compared to the bitmap of the result

in order to gauge their similarity.

94

5.5 Trajectory Normalization

In this section, we show that a sound normalization procedure can be applied to trajectories. In

the context of textual data, normalization relies on semantic rules and linguistic techniques to find

equivalence classes for terms. For example, such techniques include case-folding, true-casting,

stemming, lemmatization, and the identification of stop-words. These techniques remove superficial

differences in textual data. Normalization in the context of trajectories differs, but the notion of

equivalence classes remains the same, as highly similar trajectories should converge toward similar

sequences of points. In this section, we introduce two normalization methods and show the extent

to which trajectory data should be normalized.

5.5.1 Normalizing with Geohash

A simple normalization technique consists in mapping the points of a trajectory to a sequence of

geohashes at a constant depth d. The resulting geohashes can then be cleaned from consecutive du-

plicates and converted back to sequences of points. This approach is very lightweight and removes

most irrelevant differences in trajectories. If two trajectories follow the edges of one or several

geohashes, the resulting sequences of normalized points could be different. However, as it will be

demonstrated in Section 5.6, it does not really affect the quality of the results.

5.5.2 Normalizing with Map Matching

Another normalization technique consists in mapping trajectories to an existing road network [104].

This approach, called map matching, can give very good results, especially if the moving entity at

the origin of a trajectory is known to be constrained to a road network. Most recent map-matching

algorithms rely on the Viterbi algorithm to compute a match [61]. For each point of a trajectory,

the idea is to first retrieve a set of matching nodes on a road network within a certain radius. The

Viterbi algorithm then computes the most probable sequence of nodes on the road network [104].

This approach is computationally costly, but this price is paid only at the creation of the index.

When searching for similarities, the query trajectory has to be normalized in a similar way.

5.5.3 Extent of the Normalization

In the context of textual data, normalization usually relies on simple intuitions. Unfortunately, when

dealing with trajectories, it is difficult to rely on the same intuitions. In this section, we show how

95

(a) The raw trajectories

(b) Normalization on a grid of geohashes with

(c) Normalization on a grid of geohashes with

N1

N2

N1(Sa)

N1(Sb) N1(Sc)

N2(Sc)N2(Sa) N2(Sb)

Sa

Sb

Sc

(d) Normalization on a road network with

N3(Sa)

N3(Sb) N3(Sc)

N3

Figure 5.8: Trajectory Normalization

96

the measures introduced in [28] can be applied to trajectory normalization.

As stated previously, with normalization, trajectories should converge toward similar sequences

of points. Therefore, a good normalization function n applied to a pair of similar trajectories Sa

and Sb should satisfy the property J(W (N(Sa)),W (N(Sb))) > J(W (Sa),W (Sb)). Focusing solely

on this property, however, leads to aggressive normalization functions that make every trajectories

converge to the same output.

In order to address this issue, we start by recalling two key effectiveness measures in information

retrieval. First, precision measures the fraction of selected items that are relevant. More formally,

given the number of relevant items retrieved t p (true positive) and the number of irrelevant items

retrieved f p (false positive), precision = t p/(t p + f p). Second, recall measures to the fraction of

relevant items that are selected. In other words, given the number of relevant items retrieved t p and

the number of relevant items that have not been retrieved f n (false negative), recall = t p/(t p+ f n).

In Figure 5.8, we illustrate the effect of two hypothetical normalization functions N1 and N2

on precision and recall. We first introduce a dataset that contains the raw trajectories Sa, Sb. We

also assume a query trajectory Sq, which has one relevant result Sb in the dataset. Figure 5.8a

depicts an inverted index built with the raw trajectories and queried with Sq. Without normalization,

this index would return no relevant result Both precision and recall would therefore be equal to 0.

Figure 5.8b depicts an inverted index built with the normalization function N1 and queried with Sq.

This index would return one relevant results. Thus, precision would be 1/(1+0) and recall 1/(1+

0). Figure 5.8c depicts an inverted index built with a more aggressive normalization function N2. In

this case, Sq would return two results, precision would drop to 1/(1 + 1) and recall would remain

stable at 1/(1+0). As long as all the true positives are all included in the result set, recall remains

high. However, in the context of geodabs, an aggressive normalization function could over simplify

trajectories. In this case, recall would start dropping, especially if the normalized sequence of points

is shorter than the noise threshold specified by the winnowing algorithm. Observing the evolution

of precision and recall is therefore a good way to determine the extent of the normalization. In

ranked retrieval, this is precisely the aim of a precision and recall (PR) curve [97]. In section 5.6.1,

we empirically show how a PR curve can be used to find the best parameters for a normalization

function.

In conclusion, as long as precision and recall improves, the extent to which a trajectory is nor-

malized can be increased. In contrast, a drop in precision or recall clearly indicates that the finger-

prints do not capture what characterizes and differentiates the sequences of points anymore. Hence,

to identify the optimal extent of a normalization function, the evolution of precision and recall can

be observed on a sample dataset.

97

5.6 Evaluation

In this section, we highlight the cost of computing distances and discovering motifs with DFD,

DTW and Jaccard in dense trajectory datasets. To this aim, we characterize a large synthetic datasets

and the configuration parameters we used to perform our evaluation. Our experiments confirm the

pragmatic observation made in Section 5.1.1 and enable us to focus on Jaccard based methods. We

then compare geodabs with geohashes, both in term of efficiency and effectiveness on a large and

dense trajectory dataset. Finally, we evaluate how a geodab index can be sharded across a set of

nodes.

5.6.1 Evaluation Setup

Datasets

To perform our evaluation, we extensively rely on a synthetic dataset and on the road network

extracted from the OpenStreetMap dataset [65]. In the context of trajectory indexing, we noticed

a lack of large and dense trajectory datasets. For example, the Nokia and Geolife datasets [90,

135] are too small and too sparse to validate our contributions. In addition, these datasets lack the

trajectory queries and the associated ground truth that is required to qualitatively assess our solution.

These kinds of queries and ground truths, also lack in the popular BerlinMod synthetic dataset [40].

Therefore, we used the trajectory generator introduced in [25] to create a synthetic dataset, a set of

trajectory queries and the associated ground truth.

Our dataset is based on 5’000 unique routes constrained on a road network and generated with

the GraphHopper library [80]. The routes are all located in a dense area of 300 square kilometres

located around the center of London. We use these routes to generate 10 similar trajectories in

one direction and 10 similar trajectories in the opposite direction. These trajectories are sampled

uniformaly at a rate of one point every second. The speed of the moving entities is based on the

route duration computed by the GraphHopper library. In addition, we add 20 meters of random

Gaussian noise to every sampled points to make the dataset more realistic.

98

Figure 5.9: Routes used to generate the trajectory dataset

Figure 5.10: Similar trajectories extracted form the dataset

99

Figure 5.9 visually depicts the 50000 routes used to generate the trajectory dataset. The 1000000

trajectories derived from these routes form a very dense dataset of 6.3Gb that mimics the traces GPS

trackers would record. As of today, we found no publicly available counter parts to this synthetic

dataset. However, we believe that additional work on the generation of a dense trajectory dataset

would greatly benefit the research community. Figure 5.10 illustrates a set of 10 similar trajectories

generated on the basis of a route constrained to the road network.

Configuration Parameters

In order to evaluate the effectiveness of our solution, we need to find appropriate configuration pa-

rameters. First, we empirically evaluated several configurations and observed the best results with a

normalization based on geohashes of 36 bits, a lower bound of k = 6 and an upper-bound of t = 12.

As we get closer to the poles, the width of the geohashes tends to shrink. In London, a geohash of 36

bits has a width of 95 meters and a height of 76 meters. As a trajectory normalized with geohashes

rarely follows a diagonal path, we can assume that the average length of a move between two geo-

hashes is approximately 85 meters. Therefore, the lower-bound k translates to a segment threshold

of approximately 510 meters. Segments shorter than this threshold are considered as noise. The

upper-bound t translates to a segment threshold of approximately 1020 meters. Segments greater

than this threshold are guaranteed to be detected. To validate our parameters, we tested several

levels of normalization, performed queries on a sample of our dataset and plotted the corresponding

precision and recall curves.

100

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Recall

Pr
ec

is
io

n

32 bits
34 bits
36 bits
38 bits
40 bits

Figure 5.11: Verifying configuration parameters with a PR curve

As highlighted in Figure 5.11, the normalization based on geohashes of 36 bits clearly out-

perform its upstream and downstream counterparts. Automating the discovery of the appropriate

parameters is a difficult task, because the number of possible combinations is very large and each

configuration requires building and querying an index. A hill-climbing strategy could probably be

used to address this problem, and this might be part of our future work.

5.6.2 The Cost of Computing Distances

In this section, we characterize the cost of computing distances between trajectories and discuss

their limits when searching trajectories in dense datasets. We begin by reminding some fundamental

distance measures. We then compare them with the Jaccard distance used in the context of our paper.

101

Ground Distance

Equation 5.2 describes the haversine ground distance formula, where R corresponds to the earth’s

radius in meters. Given a pair of points pl = (jl,ll) and pk = (jk,lk), the resulting value in

d(pl, pk) corresponds to the ground distance in meters.

2Rarcsin

s

sin2
✓

jl�jk

2

◆
+ cos(jk)cos(jl)sin2

✓
ll�lk

2

◆
(5.2)

Dynamic Time Warping

Equation 5.3 presents the recursive function used to compute the dynamic time-warping distance
(DTW) [129]. Given a trajectory P = hp1, ..., pmi and a trajectory Q = hq1, ...,qni, the resulting
value in dtw(|P|, |Q|) corresponds to the DTW distance between the trajectories.

dtw(i, j) =

8
>>>>>>>><

>>>>>>>>:

• if i = 0 or j = 0

0 if i = j = 0

d(Pi,Q j)+min

8
>><

>>:

dtw(i�1, j)

dtw(i, j�1)

dtw(i�1, j�1)

otherwise

(5.3)

Discrete Fréchet Distance

Similarly, Equation 5.4 describes the recursive function used to compute the discrete Fréchet dis-
tance (DFD) [41]ite. The resulting value in d f d(|P|, |Q|) also corresponds to the DFD distance
between the trajectories.

d f d(i, j) =

8
>>>>>>>><

>>>>>>>>:

d(Pi,Q j) if i = j = 1

max

8
>>>>><

>>>>>:

d(Pi,Q j)

min

8
>><

>>:

d f d(i�1, j)

d f d(i, j�1)

d f d(i�1, j�1)

otherwise
(5.4)

102

Performance Evaluation

We compute the distance between a single query trajectory of length t and a set of trajectory candi-
dates of size c, where each candidate has a length of t. In such a scenario, the computational cost
associated with the computation of DTW and DFD is characterised by a complexity of O(c⇤ t2).

2 4 6 8 10

0
50

0
10

00
15

00
20

00
25

00

Density

Ti
m

e
(m

s)

DFD
DTW
Geodabs

Figure 5.12: Increasing the number of trajectory candidates

In Figure 5.12, the size of the set of trajectory candidates c remains constant, and the length of
the query and candidate trajectories increases. As highlighted here, as the length of the trajectories
increases, so does the computational time in a polynomial manner. Therefore, when a dataset is
primarily made of long trajectories recorded at a high sampling rate, computing DTW or DFD is
impractical.

103

200 400 600 800 1000

0
50

0
10

00
15

00
20

00
25

00

Trajectory size

Ti
m

e
(m

s)
DFD
DTW
Geodabs

Figure 5.13: Increasing the length of the trajectory candidates

In Figure 5.13, the size of the set of trajectory candidates c densifies and the length of the
trajectories t remains constant. As the size of the of the candidate set increases, so does the compu-
tational time in a linear manner. In both cases, we notice that computing the scores associated with
10 trajectories of 1000 points takes more than 2500 milliseconds. In the context of a very dense
trajectory dataset, a query can return many more relevant trajectory candidates, for which a distance
measure still has to be computed. Therefore, it is obvious that relying on these distance measures
might be qualitatively sound but clearly unsustainable at scale. In contrast, as highlighted in Fig-
ures 5.12 and 5.13, computing the Jaccard distance for ordered sets of geodabs extracted from the
trajectories is very inexpensive. This clearly confirms the correctness of the pragmatic observation
made in Section 5.1.1.

5.6.3 The Cost of Discovering Motifs

In order to find motifs in pairs of trajectories with geodabs, we have to make some assumptions
regarding the normalization step. First, we use our dataset to estimate the average number of fin-

104

gerprints extracted per meters a from normalized trajectories. As a result, when looking for motifs
of length l, we can translate this length to a number of fingerprints f = l ⇤a. Therefore, given two
ordered sets of geodabs Fi and Fj obtained by fingerprinting the trajectories Si and S j, the problem
now consists in returning a pair of motifs (F̄i, F̄j) such that length(F̄i) = length(F̄j) = f ^ 6 9(F̄ 0i, F̄ 0 j)
for which dJ(F̄ 0i, F̄ 0 j) < dJ(F̄i, F̄j). As the ordered sets Fi and Fj are usually relatively small, a
brute force implementation of this method gives good results. Because of the normalization and
the fingerprinting, the motifs discovered with this approach are not strictly equivalent in terms of
length and are subject to threshold effects. However, the results we observed in practice are good
approximations of the best result.

2 4 6 8 10

0
50

0
10

00
15

00
20

00
25

00
30

00

Density

Ti
m

e
(m

s)

BTM
Geodabs

Figure 5.14: Motif discovery with increasing trajectory candidates

In Figure 5.14, we compare our method with an optimized algorithm, called bounding-based
trajectory motif (BTM), which gives exact solutions to the motif-discovery problem by computing
DFD for every motif pair in the trajectories [119]. As illustrated here, as the number of trajectory
candidates densifies, so does the computational time. Again, our method based on geodabs appears
to be a necessary tradeoff.

105

5.6.4 The Cost of Indiscrimination

An inability of the index to discriminate between true and false positive translates to a greater
set of trajectories for which the distance has to be computed. In this section, we characterize the
effectiveness and the probabilistic nature of the geohash and geodabs indexes. We then show how
an inability to discriminate directly affects performances.

Index Effectiveness

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Recall

Pr
ec
is
io
n

Geodabs
Geohash

Figure 5.15: PR curve

Figure 5.15 depicts the PR curves obtained by querying the geodabs and geohash indexes [97].
When looking at the geohash curve, we first notice that precision drops rapidly as recall increases.
This is due to the inability of the geohash index to discriminate among similar trajectories that
go in opposite directions. Because each trajectory of our synthetic dataset is associated with a
return path, the geohash curve tends to stabilise at a precision of 0.5, as recall increases. The curve

106

associated with the geodab index clearly shows that our method addresses this discrimination issue.
Furthermore, we also notice that the first results returned by the geodab index are characterized by
very high precision. In the context of a very dense dataset, this property is desirable because we can
focus on the subset of the most relevant results.

0e+00 1e−04 2e−04 3e−04 4e−04 5e−04

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1−Specificity

Se
ns
iti
vi
ty

Geodabs
Geohash

Figure 5.16: ROC curve

Figure 5.16 depicts the receiver-operating-characteristics (ROC) curve obtained by querying the
geodab and geohash indexes [48]. In ranked retrieval, sensitivity usually corresponds to recall and
specificity is given by tn/(f p + tn). Thus, in contrast with the PR curve, the ROC curve enables
us to qualitatively assess the full retrieval spectrum [97]. As we look at the full retrieval spectrum,
the quality our results is exacerbated by the size of the dataset. Therefore, it is important to notice
that the plot focuses on a very narrow interval of the specificity. In fact, qualitatively speaking, both
indexes are characterized by a very high sensitivity and a marginally low number of relevant results
are lost. This is confirmed by computing the area under the ROC curve (AUC) that is of 0.999889
for geodabs and 0.9999521 for geohashes. Here, the minor difference in terms of AUC comes from
the fact that a marginal number of relevant results can be missed with geodabs. the fact that the

107

curve associated with geodabs climbs more steeply, however, confirms that the first results returned
by our method are more relevant.

Index Efficiency

2 4 6 8 10

0
20

0
40

0
60

0
80

0

Density

Ti
m

e
(m

s)

Geohash
Geodabs

Figure 5.17: Executing 100 queries on a large dataset of increasing density

Figure 5.17 compares the average time needed to process 100 queries on inverted indexes built with
a sample of up to 100000 trajectories. Here, in contrast with the results highlighted in Section 5.6.2,
the number of trajectory candidates is not controlled. Therefore, the difference between geohash
and geodabs mainly highlights the inability of geohash to discriminate among trajectories. By com-
bining several cells into one hash, a geodab not only discriminates on the direction of the trajectory,
but also by all its constituents. Therefore, the number of candidates for which the Jaccard distance
has to be computed is significantly reduced. As a result, processing queries is significantly faster
but as shown earlier, the quality is not compromised.

108

5.6.5 The Distribution of the Index

We test the distributed nature of our index with a global road network extracted from the full dump
of OpenStreetMap. Here, we make the assumption that the distribution of trajectories recorded
across the world should mostly fit on a road network and be characterized by a similar distribution.
The geodabs produced by our algorithm are characterized by a geohash prefix of 16 bits that can
easily be extracted with a bitwise operation. Geohashes of depth 16 subdivide space into 216 cells
characterized by a width of approximately 156 kilometres at the equator.

10000 20000 30000 40000 50000 60000

0
50
00

10
00
0

15
00
0

20
00
0

25
00
0

geohash

tra
je
ct
or
ie
s

Figure 5.18: Distribution of the trajectories in geohash areas

In Figure 5.18, we plot the number of trajectories per geohash and we notice some very dense
areas. For example, the highest peak located on the left of the diagram corresponds to the geohashes
located around Mexico city. In contrast, the voids we have between the peaks correspond to areas
of low activity, such as oceans.

109

A B C D E F G H I J

Nodes

Tr
aj

ec
to

rie
s

0e
+0

0
2e

+0
5

4e
+0

5
6e

+0
5

8e
+0

5

100 shards
10000 shards

Figure 5.19: Distribution of the trajectories in a 10 nodes cluster

In Figure 5.19, we assume that the index is distributed across 10 nodes. We notice that a small
number of shards (100) is not sufficient to distribute the data in a balanced fashion. However, with
a greater number of shards (100000), the data are well balanced on the nodes. Therefore, there is
a tradeoff to make between preserving locality (to reduce the number of shards contacted when
performing queries) and breaking locality (to spread the data evenly in the the cluster).

5.7 Conclusion

In this paper, we have shown that fingerprinting, and more specifically winnowing, can be used for
indexing trajectories. We have introduced geodabs, a construction that combines hashing and geo-
hashing to discriminate on the spatial and on the temporal dimensions. In addition, we have shown
that geodabs can be used to scale and distribute an index across several nodes in a cluster. We have
demonstrated how trajectory normalization can be used to improve the quality of an index. Finally,
we discussed several pragmatic experiments that demonstrated the effectiveness and efficiently of
trajectory fingerprinting with geodabs.

110

Part III

Future: Predicting Trajectories

111

Chapter 6

Capturing complex behaviour for
predicting distant future trajectories

Bertil Chapuis, Arielle Moro, Vaibhav Kulkarni, and Benoı̂t Garbinato. Capturing complex be-
haviour for predicting distant future trajectories. In Proceedings of the 5th ACM SIGSPATIAL In-
ternational Workshop on Mobile Geographic Information Systems, pages 64–73. ACM, 2016

Abstract

We put forth a system, to predict distant-future positions of multiple moving entities and index
the forecasted trajectories, in order to answer predictive queries involving long time horizons. To-
day, the proliferation of mobile devices with GPS functionality and internet connectivity has led
to a rapid development of location-based services, accounting for user mobility prediction as a key
paradigm. Mobility prediction is already playing a major role in traffic management, urban planning
and location-based advertising, which demand accurate and long time horizon forecasting of user
movements. Existing prediction methodologies either use motion patterns or techniques based on
frequently visited places for predicting the next move. However, when it comes to distant-future,
human mobility is too complex to be represented by such statistical functions. Therefore, the ex-
isting techniques are not well suited to answer distant-future queries with a satisfactory level of
accuracy. To tackle this problem, we introduce a novel spatial object, ’Representative Trajectory’,
which embodies the movements of users amongst their zones of interest. We propose means to
empirically evaluate the quality of this object and dynamically adapt its extraction method based
on user mobility behaviour. We rely on an inverted index to store the predicted trajectories that
scales well with the number of moving entities. Our evaluation results show that the technique
achieves more than 70% accurate predictions with the best extraction technique. This shows that

112

longer query time horizons do not necessarily demand complex spatial indexing schemes, which
have to be rebalanced as they grow and which is a constantly experienced problem while answering
predictive queries.

6.1 Introduction

ZOI
Detection

t1 t2 t3 t4 t5

Work

Home
Markov
Chain

Extraction

GPS Logs
1 2

Extract Trajectories

3Inline
Labelling

< Store ZOI and Cell ID’s of Representative trajectory >
Data Store

Café

Park

Gym

Representative Trajectory

Figure 6.1: Overview of the System Model.

The booming trend of ubiquitous computing, behavioural prediction and ease of availability of inter-
net services, is directly impacting the way we store, retrieve, process and query data. The coming era
will witness dramatic advances in the domain of positioning technologies and localisation. There-
fore, location tracking and user mobility prediction is becoming increasingly important. Formu-
lating prediction techniques to attain satisfactory accuracies at high granularities puts forth several
challenges. Firstly, maintaining high accuracy is crucial for applications such as urban planning,
traffic prediction and managing fleets of autonomous vehicles. Secondly, when multiple moving
users are involved, it is important to have a scalable indexing technique specially while answering
predictive queries.

The existing solutions to the aforementioned problems are not well adapted to solve all the
requirements mentioned above. Firstly, the prediction techniques that are built on motion func-

113

tions, pattern mining or temporal extrapolations, do not truly capture the complex nature of human
movement. This factor is especially critical when accounting for distant future predictions, which
typically lie in the order of several hours, for which such statistical means fail. The second problem
is, the existing techniques, which attempt to model long time horizon predictions, collect a set of
frequently visited places by the user and formulate the future place prediction within this set. Such
techniques lose the information lying in between these frequently visited places, which is essential
to achieve the fine granularity while predicting. An application, where such a level of prediction
comes in useful, is to answer predictive queries related to vicinity matching around some locations
that are not necessarily included in the set of frequently visited places of a user, but may lie on the
trajectory taken to travel from one frequent place to another. The present techniques, which index
trajectories, rely on tree structures that require rebalancing when the tree is updated and thus present
scaling issues specially when multiple moving points are involved.

Current position

Future position

Distant future query

User A

User B

User C

Figure 6.2: An Example of a Distant Future Query Represented with 3 Mobile Users.

In this paper, we put forth solutions to the above problems and propose a complete system
capable to answer the kind queries as expressed below, and depicted in Figure 6.2. The query can be
expressed as: ”Select all the users who will travel in the vicinity of a given location during their next
move with a probability higher than a given threshold”. We first extract the frequently visited places
of the user, formally called Zones of Interest (ZOIs), and the transitions amongst them that will be
used to train a Markov mobility model. We then extract the past trajectories in order to attain all
the possible paths the user takes amongst ZOIs. We introduce a novel spatial object, ”representative
trajectory” that captures the substantive user mobility behaviour and adapts its extraction according

114

to the dynamically changing user movements. The representative trajectories are then indexed when
a user enters in a ZOI to answer predictive queries. The system overview is depicted in Figure 6.1.
Our key contributions are listed hereafter.

• We put forth a complete system capable of predicting distant future trajectories of mobile
users and thus answering matching queries for multiple moving users. This is made possible
by taking the transitions within the individual ZOIs, thus accounting for trajectories lying
within and therefore achieving higher granularity.

• Our ZOI and representative trajectory computation scheme considers dynamic user move-
ments and adapts the computation parameters according to the mobility behaviours. We in-
troduce a novel spatial object, called ’Representative Trajectory’, which captures the practical
nature of human mobility, by considering the fact that, users can move between two ZOIs
through different paths. We further discuss and derive means to extract the best path amongst
the several paths to represent the most significant trajectory of the user.

• We describe an evaluation framework that utilises precision and recall to assess the quality of
representative trajectories.

• Lastly, we present a practical indexing technique based on inverted index, in order to store the
trajectory predictions. This technique does not demand costly rebalancing actions as opposed
to existing tree structures.

6.2 Related work

Indexing past, current and future positions of moving entities in order to answer predictive queries is
an actively research topic, due to the ubiquity of location based services. Therefore, it is important
to distinguish our contribution from the plethora of existing works. At the top level, the literature
can be separated, into queries related to a single point moving in one dimensional space, viz., ”find
all café’s around me in next hour” [114, 121, 120] and queries accounting for multiple moving
points in space, viz., ”find all users that will be in the vicinity of café X in next hour”. Secondly, the
existing work can also be separated on the basis of the sampling rate of tracking the moving object
locations. Low sampling rate based approaches rely on manual checkins by the users that may range
in the order of one location log a day. On the other hand, high sampling rate based approaches, track
the user locations after every few seconds. Both these approaches demand different prediction and
indexing techniques and the low sampling rate based technique as presented in [34] is beyond the
scope of this work. The proliferation of mobile devices with GPS functionality and uninterrupted
internet services today, foster and ease the process of continually tracking the moving objects with a
high sampling rate. Hence our focus lies on location logs collected at high sampling rates. Further,
the time horizon of the query window is an important aspect, which can be dissected into near future

115

and distant future queries. Majority of the published work today focuses on near future queries in
the order of next 15 minutes [114, 121, 120, 107, 31]. However, our work focuses on distant future
queries in the order of several hours. The work attempting to solve distant future queries relies
on motion prediction techniques by modelling the movement in terms of motion patterns, motion
functions and temporal extrapolation [120]. However, according to our observation, such prediction
methodologies fail to grasp and accurately represent long term user movements. Therefore, we
utilise Markov models to perform distant movement predictions. We further discuss how to index
such predictions for efficiently answering the queries we described in Section 6.1. To summarise,
our work lies in answering vicinity matching queries for multiple moving points, whose location
logs are tracked at a high sampling rate. We focus on distant future queries that demand accurate
prediction methodology for which we depend on mobility Markov models.

Regarding the prediction techniques, a majority of existing work is focussed on predicting move-
ments between certain points of interests [51, 130, 98, 53, 52, 95]. A domain of research also relies
on cell based techniques for making predictions at the granularity of network cells [51, 95]. Such
schemes completely ignore the trajectories lying in between the individual places, which is critical
to answer distant future queries involving multiple moving points with a high degree of accuracy.
Additionally, the size of a typical network cell lies in the range of several kilometres, which is not
adequate to answer queries related to fine grained vicinity matching. On the other hand, predic-
tions based on map matching techniques are complex and need additional services such as network
availability, which is not always feasible and is computationally expensive [81]. Existing prediction
techniques considering user trajectories amongst points of interests do not store these models, which
is a critical factor to answer certain queries. Further, Kalman filter based prediction approaches, in-
volve higher complexity and thus results in higher latency as discussed in [91]. Our work consists
of estimating the ZOIs in which a user spends considerable amount of time and then attain the
representative trajectory in between these zones that assist to answer the queries described above.
Several techniques have been demonstrated to extract points of interest of users whose central theme
is based on clustering [120]. As compared to these traditional approaches, our clustering technique
enables to extract the frequently visited places of a user according to the mean of the number of vis-
its, the time spent and the distance covered in the significant location, which better represents such
a place. Additionally, setting the spatiotemporal bounds based on individual mobility behaviour
allows to extract places that are not necessarily found with direct clustering. Further, we follow a
technique to dynamically adjust the parameters to extract the representative trajectory based on the
user behaviour to consistently maintain satisfactory levels of precision and recall. Thus, unlike the
methods presented in the literature, we account for the user behaviour to set parameters for both,
extracting the ZOIs and representative trajectories lying in between the zones.

In traditional indexing schemes, the content is only altered when users explicitly perform up-
dates. This is as opposed to indexing moving object locations, where the data quickly becomes
outdated and continual write operations are necessary to keep the data updated. A common ap-

116

proach to address this issue and decrease the number of updates is to adopt an alternative model for
representing the location of moving objects. In [114], Saltenis et al. present techniques to index
positions of continuously moving objects. The position of the objects is modelled as linear/non-
linear function of time and velocity. They present efficient techniques to index trajectories and
partition R-Tree containing motion functions. However, as previously discussed, such techniques
fail to accurately formulate distant future predictions. In [68], Hendawi et al. present a framework
to predict answers to queries as well as queries themselves by monitoring high query rate areas.
However, this technique is restricted to a single object prediction. In [68], Bao et al. propose an
index structure for processing predictive queries, however with the assumption that moving objects
follow shortest paths during their travel from source to the destination, which is not necessary true
in practice according to our observation on real work mobility traces. In [120], Tao et al. present
methods to predict and index unknown motion patterns of moving objects using recursive motion
patterns to express complex trajectories. In [128], Yanagisawa et al. model the motions into three
distinct categories including staying, moving straight and moving randomly. In [77], Jeung et al.
present a hybrid prediction model for near future and distant future predictions. However, all these
methods are either based only on frequently visited places and ignore encompassed trajectories or
fail to model distant future predictions. The indexing techniques, discussed in [114, 121, 120], rely
on tree structures that require rebalancing as the number of moving points increase and thus do not
necessarily scale well. As a result, our approach is based on a simple and practical strategy, which
is an inverted indexing model.

6.3 System Model and Definitions

In this section, we introduce our system model, with formal definitions and notations.

6.3.1 Users and Locations

We consider a set of users U = {u1, . . . ,un} moving on the surface of the earth with mobile devices
that have the ability to locate themselves, typically via a Global Positioning System (GPS)1 or some
other positioning means, e.g., WiFi Positioning System (WPS)2. The definitions presented below
are from the view point of one user. The location history of the user is expressed as a sequence
L of n locations, as L = hloc1, . . . , locni. Each location, loci contained in L, is represented by a 3-
item tuple loci = (f ,l , t). The latitude and longitude of the coordinate are represented by f ,l 2 R
respectively, and its timestamp by t 2 N.

1http://www.schriever.af.mil/GPS
2http://en.wikipedia.org/wiki/Wi-Fipositioningsystem

117

http://www.schriever.af.mil/GPS

6.3.2 Clusters and Zones of Interest

Figure 6.3: Clusters, Cluster Groups and Zones of Interest.

In order to extract the Zones of Interest (ZOI) of a user based on the location history L, we must
first introduce the notions of cluster and cluster group.

Cluster

A cluster represents a visit or a stay in a delimited area. It is formed from a subset of locations,
sharing the same spatial and temporal characteristics. A cluster is a 4-item tuple c = (f ,l ,Dr, l),
where f and l 2 R are the latitude and longitude coordinates of a centroid, Dr 2 R is its radius
in meters and l 2 L is the subset of successive locations belonging to c. The centroid of the clus-
ter is the mean of all f and l of the locations contained in l. Here, the radius corresponds to the
maximum distance between the centroid of the cluster and the locations belonging to l. In order to
build clusters, we introduce the constraining constants Ddmax and Dtmin 2 R, which correspond to
the distance expressed in meters and a time duration expressed in seconds respectively. The distance
between all the locations lying inside l and the centroid of the cluster must be lower than or equal
to Ddmax. In addition, the duration between the first location and the last location must be greater
than or equal to Dtmin. On this basis, we introduce C, the set of clusters extracted from the location
history of a user as C = {c1, . . . ,cn}.

118

Cluster Group

A cluster group is an aggregation of overlapping clusters. Formally, a cluster group is a 4-item tuple
g = (f ,l ,Dr,{c1, . . . , cn}). The first three items of a cluster group are the same as the ones present
in a cluster. Clusters are grouped whenever they overlap. Consequently, the last item of the tuple
corresponds to the set of n overlapping clusters belonging to C. The centroid of the cluster group
is the mean of all the centroids of the clusters contained in g, and Dr must be computed in order to
enclose all the individual clusters present in g. Finally, we introduce G which contains the n cluster
groups belonging to a user as G = {g1, . . . ,gn}.

Zone of Interest (ZOI)

Intuitively, a ZOI is a cluster group that is frequently visited by a user. Let vmin 2 N be a constant
that represents a minimal number of visits. A cluster group becomes a ZOI if and only if the number
of clusters in the group is greater than or equal to the constant vmin. However, if we only take into
account this constant, it is not possible to find the ZOIs of a user from the beginning of the process,
especially if a very high value is set a priori. To resolve this issue, we introduce a variable vmean

that is the mean of the number of visits per cluster for a user. This value acts as a reference visit
threshold until reaching vmin. A ZOI consists of the same items as those of g, further denoted as z to
distinguish the two tuples. The centroid and the radius values of z are the same as for g. In addition,
we introduce a set Z containing the n ZOIs of a user represented as Z = {z1, . . . ,zn}.

6.3.3 Trajectories

A user can take multiple paths to move from one ZOI to another. Consequently, we introduce the
set of trajectories Ti, j that can be extracted from the raw set of locations L. Formally, Ti, j is a set of
n trajectories Ti, j = {l1, . . . , ln}, where each trajectory li is a substring of the sequence L in which
the first location is contained in zi and the last location is located in z j. In addition, the locations
recorded between zi and z j in li do not pass over trajectories going towards any other ZOI.

6.3.4 Mobility Prediction Model

In this work, we consider a mobility prediction model following the structure of a first order Markov
chain. Each user has a unique Markov chain, computed on the basis of the elements defined previ-
ously. Equation 6.1 depicts a matrix M containing n⇥n transitions probabilities, where n = |Z|. In
other words, each ZOI is a state of the matrix M and a transition probability pi, j represents the prob-

119

ability to move from a specific zi to another z j. As shown in Equation 6.2, the transition probabilities
pi, j of the matrix M can be computed using the cardinalities of the sets of trajectories Ti, j.

M =

2

666664

p1,1 . . . p1,i . . .
...

. . .
...

. . .
p j,1 . . . pi, j . . .

...
. . .

... pn,n

3

777775
(6.1)

pi, j =
|Ti, j|

Â
zk2Z

|Ti,k|
(6.2)

6.4 Predicting Trajectories

FN TN

TP FP r =
precision = TP/(TP+ FP)

recall = TP/(TP+ FN)
TP = | t ∩ r |
FP = | t − r |
FN = | r − t |

t =

Figure 6.4: Binary Classification in the Context of Trajectories.

Given two ZOIs zi and z j, we consider the problem of computing the trajectory that accurately
predicts the future moves from one zone to the other. In other words, the idea consists in extracting
spatial objects from the actual trajectories that represent the future trajectories of a user between
ZOIs. We call these spatial objects representative trajectories as they capture the essence of the
past movements of a user amongst ZOIs. In this section, in order to evaluate the predictive capacity
of a representative trajectory, we first introduce some measures that can be used to assess their
accuracy. We then evaluate several strategies for building representative trajectories, some of which
take the behaviour of the user into account in order to make the predictions more relevant.

6.4.1 Evaluating Representative Trajectories

The first question to answer is, ”how can the effectiveness of a representative trajectory, be mea-
sured in the context of a predictive query?”. In information retrieval, the performance of a system

120

is often measured in terms of precision and recall. Given the results of a query, binary classification
is used to assess how many of the results are relevant (precision) and how many relevant results
were selected (recall). Similarly, given the actual trajectory followed by a user and the correspond-
ing predicted trajectory, it is possible to assess how many subparts of the trajectory are relevant
according to the predicted trajectory (precision) and how many subparts of the predicted trajectory
were selected (recall). To achieve this goal, we discretise space by introducing a Grid that allows
us to perform binary classification on all the subparts of a trajectory. More formally, a Grid can
be described as a set of uniquely identified cells, such that Grid = {cell1, . . . ,celln}. Figure 6.4,
illustrates the calculation of precision and recall in the context of discretised trajectories. Assuming
t a set of cells corresponding to a actual trajectory and r a set of cells corresponding to a repre-
sentative trajectory, the number of true positive cells T P can be expressed by the cardinality |t \ r|,
the number of false positive cells FP can be expressed by the cardinality |t� r| and the number of
false negative cells FN can be expressed by the cardinality |r� t|. Consequently, precision can be
expressed as T P/(T P+FP) and recall by T P/(T P+FN). On this foundation, we formally intro-
duce Precision and Recall that are defined in Equations 6.3 and 6.4. Finally, the measure Fb , often
denoted as F-score, combines precision and recall in a single metric that can be expressed as the
weighted harmonic mean described in Equation 6.5. Depending on the situation, one may decide to
give more importance to precision or to recall by adjusting the weight factor b .

Precision(t,r) =
|t \ r|

|t \ r|+ |t� r| (6.3)

Recall(t,r) =
|t \ r|

|t \ r|+ |r� t| (6.4)

Fb (t,r) = (1+b 2) · Precision(t, r) ·Recall(t, r)
b 2 ·Precision(t, r)+Recall(t, r)

(6.5)

121

c1 c2 c3 c4 c5 c6 c1 c2 c3 c4 c5 c6

c1 c2 c3 c4 c5 c6

c1 c2 c3 c4 c5 c6

c7 c8 c9 c10 c11 c12

c1 c2 c3 c4 c5 c6

c1 c2 c3 c4 c5 c6

c7 c8 c9 c10 c11 c12

c1 c6

t r

6/(6+0)
= 1

Precision(t,r) Recall(t,r)

2/(2+0)
= 1

2/(2+4)
= 1/3

6/(6+6)
= 1/2

6/(6+0)
= 1

0/(0+6)
= 0

0/(0+6)
= 0

6/(6+0)
= 1 a)

b)

c)

d)

Figure 6.5: Precision and Recall in the Context of Trajectories.

Figure 6.5 shows how precision and recall can be calculated given the cells of an actual trajec-
tory t and the cells of a representative trajectory r. As illustrated here, precision and recall accurately
answer the questions how many subparts of the actual trajectory t are relevant according to the rep-
resentative trajectory r and how many subparts of the predicted trajectory were selected. Figure 6.5a
shows that, if t and r perfectly overlap, then precision and recall are high. Figure 6.5b shows that,
when r is a subset of t, then precision drops because only few cells of the actual trajectory are rele-
vant according to the representative trajectory. Figure 6.5c shows that if t is a subset of r, then recall
drops, because only a few cells of the representative trajectory were selected. Finally, Figure 6.5d
shows that, when t and r do not overlap, precision and recall are both low.

6.4.2 Building Representative Trajectories

In the previous section, we have not considered how the cells of a representative trajectory were
actually selected. In order to build this representative trajectory, we first introduce the set ti, j

that is a discretised version of the set of trajectories Ti, j. More formally, ti, j is a set of n discre-
tised trajectories ti, j = {t1, . . . , tn}, where each trajectory tk is a set of n cells such that tk 2 ti, j :

122

{cell1,cell2, . . . ,celln}. The importance of a cell in a representative trajectory is defined by its
number of occurrences in ti, j. Thus, we introduce the multi set Oi, j that counts the number of oc-
currences of a cell in ti, j and can formally be defined as Oi, j ✓ Grid⇥N⇤. Finally, the cells with
a number of occurrences greater than a given threshold are gathered in set Ri, j that constitutes the
representative trajectory. As a consequence, when building a representative trajectory, the main
challenge consists in selecting a threshold q 2 N⇤ that will select the most accurate and relevant
cells for predicting the future moves of a user. In a more formal way, given the threshold q , a
representative trajectory Ri, j can be obtained with the function described in Equation 6.6.

R(Oi, j,q) = {c|(c,n) 2 Oi, j ^n� q} (6.6)

In addition to these general definitions, we introduce some utility functions that can be used
to select thresholds that take the behaviour of the user into account. The function Mean(Oi, j),
formally defined in Equation 6.7, returns the mean number of cell occurrences of the multiset Oi, j.
In a similar way, the functions Min(Oi, j) and Max(Oi, j), defined in Equations 6.8 and 6.9, return
the minimum and maximum number of cell occurrences of Oi, j respectively.

Mean(Oi, j) =

Â
(c,n)2Oi, j

n

|Oi, j|
(6.7)

Min(Oi, j) = min
(c,n)2Oi, j

n (6.8)

Max(Oi, j) = max
(c,n)2Oi, j

n (6.9)

In the previous section we introduced Precision and Recall in the context of a trajectory t and
a representative trajectory r. Since ti, j contains several discretised trajectories, we introduce the
functions AvgPrecision(ti, j,r) and AvgRecall(ti, j,r) respectively defined in Equations 6.10 and 6.11
that measure the average precision and the average recall for multiple sets of cells.

AvgPrecision(ti, j,r) =

Â
t2ti, j

Precision(t,r)

|ti, j|
(6.10)

AvgRecall(ti, j,r) =

Â
t2ti, j

Recall(t,r)

|ti, j|
(6.11)

123

Mean Threshold

An obvious approach to select a threshold consists in using the mean cell occurrences as illustrated
in Equation 6.12. While this method is straightforward and computationally efficient, it does not
account for the behaviour of the user within the ZOIs. For example, during the week, a user may
always take the same route to go from home to work, while during the weekend he would leave
home for excursions and come back at the same place. A threshold, based on the mean of the cell
occurrences, is not adapted to capture this kind of behaviour.

qmean = Mean(Oi, j) (6.12)

F-Score Threshold

In order to build better representative trajectories, we can consider the problem of selecting the
threshold as an optimisation of the Fb score introduced in Section 6.4.1. In other words, given
the trajectories of a set ti, j, the idea consists in computing the average F-Score for all the possible
thresholds. Then, the threshold that gives the best average score for Fb can be considered as the best
possible threshold for the representative trajectory. More formally, assuming a set of candidate rep-
resentative trajectories CRi, j expressed in Equation 6.13, one can find the representative trajectory
that gives the best F-Score, as described in Equations 6.14 and 6.15.

CRi, j = {rq = R(Oi, j,q)|q 2 [Min(Oi, j),Max(Oi, j)]} (6.13)

8rq 2CRi, j : Fq
b =

Â
t2ti, j

Fb (t,rq)

|ti, j|
(6.14)

Fmax
b = max

rq2CRi, j

Fq
b (6.15)

Finally, qFb can be defined as the min q for which Fmax
b = Fq

b . With this approach, one can
decide to give more importance to precision or recall by adjusting the b parameter. The main
disadvantage of this technique lies in the fact that, Fb scores have to be computed over all the
possible thresholds, which is computationally expensive.

124

Adaptative Threshold

A third approach consists in assuming that precision and recall, both contain meaningful insights,
regarding the behaviour of the user, that can be used to adapt an existing threshold. First, as illus-
trated in Figure 6.5a, if the user always follows the same path, the representative trajectory is easy
to build and the precision and recall are both expected to be very high. In that case, no actions are
needed. Second, as illustrated in Figure 6.5b, a low precision and a high recall suggests that the user
takes several paths to go from one place to the other. Some regular paths are not included in the
representative trajectory, which causes the precision to drop. Consequently, the threshold used to
select the cells can be lowered in order to include these cells in the representative trajectory. Third,
as illustrated in Figure 6.5c, a low recall with a high precision suggests exactly the opposite. The
user follows several paths and some insignificant ones are included in the representative trajectory.
Consequently, the threshold used to select the cells can be strengthened. Finally, as illustrated in
Figure 6.5d, if the user does not have a consistent behaviour between two ZOIs, which usually hap-
pens for week-end excursions, the precision and recall both drop and can be used as insights on the
poor quality of the representative trajectory. In order to account for these different scenarios, we
first compute a representative trajectory r using the mean threshold, such that r = R(Oi, j,qMean).
On this basis, Equation 6.16 introduces a readjusted threshold that accounts for the user behaviours
as discussed.

qA = Max(Oi, j)⇤
AvgPrecision(ti, j,r)+(1�AvgRecall(ti, j,r))

2
(6.16)

125

6.5 Solution Architecture

Location provider layer

ZOI + Markov model layer

Trajectory extraction layer

Inverted index layer

Application layer

new locations

update

query

So
lu
tio

n

update

1

2

3

Figure 6.6: Layers of the Solution Architecture.

The previous sections showed how representative trajectories can be extracted from the location data
of a single user. In this section, we go back to the initial requirement, which consists in a predictive
query involving a set of users. We present a solution architecture based on an inverted index that can
be used to answer such queries. In its simplest form, an inverted index is composed of two parts:
a dictionary of terms where each element points to a postings list. In the context of text retrieval,
the terms of the dictionary would correspond to words and the postings would correspond to lists
of documents. In our context, the terms of the dictionary are the cells of a Grid and the postings
correspond to tuples (u, pi, j) where u is a user identifier belonging to U and pi, j corresponds to the
transition probability between two ZOIs, zi and z j belonging to M as introduced earlier. On this
foundation, the architecture can be divided into three distinct procedures that act on the different
layers depicted in Figure 6.6.

126

6.5.1 Prediction Model Extraction

Z2

Z3

Z1
0.9

0.4

0.8
0.2

0.1

0.5

Markov Chain

Z1

Z2

Trajectories

x

y

t

Z3

Z1
Z2

Zone of Interest

0.1

Representative Trajectories

1
2

3

4

Z3 Z2T3,2

c1 c2

c3

c4 c5 c6 c7

c8 c9

c10 c11 c12 c13 c14

c15

T3,2

R3,2

R3,2

Figure 6.7: Extracting Representative Trajectories.

The first procedure aims at extracting the representative trajectories from the location history of a
user. Figure 6.7 recalls the four main successive steps involved in the extraction of the representative
trajectories. These steps are described as below and executed for each user u belonging to the set U .

1. Zones of Interest discovery. As introduced in Section 6.3, the procedure, first uses a cluster-
ing algorithm to extract the set of ZOIs, called Z, from the location history L.

2. Trajectories extraction. On the basis of the discovered ZOIs, the sets of trajectories Ti, j

amongst ZOIs, can be extracted by examining the location history L a second time.

3. Markov chain computation. The sets of trajectories Ti, j can then be used to compute the
transition probabilities pi, j of the Markov chain M. The Markov chain M is then stored for
later use.

4. Representative trajectory extraction. The set of trajectories Ti, j can also be used to compute
the representative trajectories Ri, j. All the representative trajectories Ri, j are then persisted for
later use.

127

6.5.2 Inverted Index Update

z1

z1

zi

zn

znzj

…
… …

…

pi,j

pi,j = max Mi,j

p1,1 p1,j

pi,1

…

…

…

…

1

2

3

4

Ri,j

Predicted representative
trajectory of user ui

c2 c6 c12 c10

c8 c20

Inverted index

… …

… …

c2

c6

c12

List ∪ (ui, pi,j)

Transition matrix

List ∪ (ui, pi,j)

List ∪ (ui, pi,j)

1 ≤ j ≤ n

Destination PredictionM

Figure 6.8: Updating Inverted Index.

Using the previously persisted items, the second procedure updates the inverted index every time
a user enters in one of the ZOIs. Before presenting the procedure in detail, we must introduce
variables zi and z j that are assumed to be the current and the predicted ZOIs of a user respectively.
Figure 6.8 depicts the four following steps enabling to update the inverted index.

1. Current ZOI extraction. The procedure is triggered when a user u enters in one of the ZOIs
and the identified ZOI becomes the current ZOI zi. From that point, it is possible to find all
the next possible ZOIs and their respective transition probabilities in the matrix M.

2. Next ZOI prediction. The predicted ZOI z j corresponds to the ZOI with the maximal transi-
tion probability pi, j in the Markov chain M amongst the transitions from zi.

3. Representative trajectory retrieval. As soon as the current and predicted ZOIs are identi-
fied, the representative trajectory Ri, j associated with zi and z j can be retrieved amongst all
the representative trajectories stored for the user.

4. Inverted index update. After the retrieval of the representative trajectory Ri, j, the inverted
index must be updated. To do so, the tuple (u, pi, j) is added to all the postings lists pointed
by the cells of the representative trajectory.

128

6.5.3 Answering the query

The third procedure is used to answer queries. We consider queries of the following nature: ”Select
all the users who will travel in the vicinity of a given location during their next move with a proba-
bility higher than a given threshold”. We assume that we know the search zone to initiate the query,
which can be formally expressed as a tuple searchzone = (loc,Dr) by the requestor. In addition, the
probability threshold stated in the query is denoted pth. In order to answer the query, the searchzone

is first converted into a set of cells belonging to the Grid and called searchcells.

searchcells

Search zone

c12 c10

c8

Inverted index

… …

… …

c12

c10

c8

List

List

List

All distinct
users iff for each
user and cell =>

pi,j ≥ pth

Output

Figure 6.9: Answering the Query.

As illustrated in Figure 6.9, assuming that the predicted representative trajectories Ri, j have
been added to the inverted index for each user belonging to U , it is now possible to retrieve all the
users who will move through the cells specified in the query. In other words, users are selected if
the following two conditions are met. First, when at least one cell of their representative trajectory
of their next predicted move matches with one of the searchcells. Second, if their probability pi, j

associated with their matching cell is greater than or equal to the probability threshold pth.

6.6 Evaluation and Discussion

We perform the evaluation of the system based on the Nokia data set [90], which consists of mobility
traces collected from 188 users around lake Geneva region in Switzerland from October 2009 to
March 2011. The mean duration of the participants, which mainly consisted of university students
and professionals, was about 14 months consisting of more than 10 million location points. We
implemented the components of our architecture, including the clustering algorithm, the Markov
chain and the representative trajectory extraction algorithms in Scala. We used the Java Google S2
Library in order to discretise space3. The grid provided by this library comes with the guarantee that

3https://github.com/google/s2-geometry-library-java

129

https://github.com/google/s2-geometry-library-java

the cells will have similar areas and we configured it to produce cells that are one square kilometre
on an average. In the context of this evaluation, we used a first order Markov chain to predict the
movements of a user across ZOIs. This choice was motivated by the fact that, our experiments with
second order Markov chains showed a gain of only 2% in terms of accuracy for predictions made
with the whole dataset. We believe a much greater gain in terms of accuracy can be obtained by
simply cleaning and sanitising the dataset.

In order to evaluate our methods for building representative trajectories, we used 70% of the
dataset for creating the Markov chains and the representative trajectories. Using the remaining 30%
of the dataset, we performed 4727 trajectory predictions and evaluated the quality of the outputs
using the actual trajectories followed by the users. Figure 6.10 uses two dimensional Kernel Density
Estimate (KDE) to evaluate these predictions in terms of precision and recall. In these plots, a high
density corresponds to a large concentration of predictions. The density can be greater than one as
the probability is multiplied by an area of the two dimensional space. In these plots, the upper-right
corner is the sweet spot. As illustrated in Figure 6.10a we ideally foster predictions characterised
by a high precision and a high recall. The lower-right corner would typically contain predictions
as the one illustrated in Figure 6.10b. Such predictions are symptomatic of a strong threshold that
filters too many cells out of the representative trajectory. On the contrary, the upper-left corner
would typically contain predictions as the one illustrated in Figure 6.10c. Such predictions are often
synonym of a weak threshold that preserves too many cells in the representative trajectory. Finally,
the lower-left corner contains results characterised by a poor precision and a poor recall as the one
illustrated in Figure 6.10d. Such predictions can be synonymous with an inconsistent behaviour
between the ZOIs or with a completely wrong result at the level of the Markov chain.

The five threshold selection methods we evaluate in order to build representative trajectories are
Mean (qMean), F1 (qF1), F2 (qF2) and F3 (qF3) and A (qA). In Figure 6.10a, the threshold is set to
the Mean number of occurrences of the cells in the representative trajectory. This plot highlights
a high density on the upper side, i.e, predictions are usually characterised by a high precision but
recall varies a lot. As previously stated, this gives us the intuition that the threshold is too weak.
When the user takes several distinct paths to go from one ZOI to the other, some irrelevant cells
are included in the representative trajectories. Therefore, this method fails at accurately accounting
for the behaviour of the user and may return a significant number of cells when used in practice.
In Figure 6.10b, the threshold is obtained by searching a value that gives the best Fb score when b
is set to 1. In that case, the density plot highlights predictions characterised by a very high recall
but a highly varying precision. This is symptomatic of a strong threshold value that filters out
most of the cells of the representative trajectory. In other words, the predicted cells will be highly
accurate but cover only a subpart of the trajectory followed by the user in practice. In Figure 6.10c
and 6.10d, the b score is respectively set to 2 and 3. Here the tradeoff between precision and
recall is clearly highlighted by the fact that, the predictions shift towards a better balance between
precision and recall. The positive impact of adjusting the b weight shows that the selected thresholds

130

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Recall

Pr
ec
is
io
n

0.5
1.0
1.5
2.0
2.5
3.0
3.5

Density

(a) Density for threshold Mean

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Recall

Pr
ec
is
io
n

1
2
3
4
5
6

Density

(b) Density for threshold F1

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Recall

Pr
ec
is
io
n

1
2
3
4
5
6

Density

(c) Density for threshold F2

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Recall

Pr
ec
is
io
n

1
2
3
4
5

Density

(d) Density for threshold F3

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Recall

Pr
ec
is
io
n

1

2

3

4

5
Density

(e) Density for threshold A

Mean

F1
F2
F3
A

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Recall

Pr
ec
is
io
n

(f) Average precision and recall

Figure 6.10: Precision-Recall Kernel Density Estimation (KDE) for Various Thresholds Selection
Methods.

131

produce fewer predictions at the upper-left and lower-right corners in Figure 6.10d. In Figure 6.10e,
the threshold is adaptive and set by taking the behaviour of the user into account as shown in
Equation 6.10e. As highlighted in this plot, we obtained the best tradeoff between precision and
recall with this method. Furthermore, the density shows that only few results are characterised by
a low precision or a low recall. Finally, as previously demonstrated, this method is more efficient
than the others since it is not required to compute the Fb score for all the possible thresholds.

Figure 6.10f highlights the average prediction and recall obtained with the five techniques. This
plot clearly illustrates the tradeoff that occurs between precision and recall and confirms the well
balanced results we obtain with the threshold A. Interestingly, if we compare the results in terms
of F-score, as it is often the case in Information Retrieval, the combination of precision and recall
would give similar values. Adjusting, the b score may help at evaluating the methods with a single
measure, but, as it will be done in the next section, we advise to visually check the predictions in
order to assess the quality of the tradeoff between precision and recall.

We now give an overview of the predictions extracted from the dataset with a first order Markov
chain and an adaptative threshold qA. In Figure 6.11, the blue cells correspond to the predicted
representative trajectories. The green and red circles correspond to the starting and ending ZOIs
respectively. The black line corresponds to the path followed by the user between the two ZOIs.
We first notice that most predictions are visually accurate, in particular the one presented in Fig-
ure 6.11a, b and e that are characterised by a high precision and a high recall. Some predictions,
such as the ones highlighted in Figure 6.11c and f are correct but at some point the user probably
decided to take an alternative path for some unknown reasons. Since we are in the context of fu-
ture movements, we can easily imagine that, in a live system, the result of the prediction could be
used to create an incentive that would influence the behaviour of the user and directly impact the
quality of the predictions. Some predictions, such as the one depicted in Figure 6.11b, d and f, have
the same starting and ending ZOIs. Such results can typically not be obtained with methods that
solely rely on ZOIs and shortest paths to make predictions and clearly highlight the benefit of using
representative trajectories to predict future moves.

132

a) b)

c)

f)

d)

e)

Figure 6.11: Predictions Made with a First Order Markov Chain and an Adaptative Threshold A.

133

6.7 Conclusion

The growing ubiquity of mobile devices equipped with location aware services is opening the op-
portunities for novel applications. It is becoming possible to predict human mobility on a large scale
today, which can be utilised to answer predictive queries. This has put forth some challenges, which
the current prediction and indexing techniques are not well adapted to solve. Through this paper,
we introduce an architecture that is capable to predict mobility over long time horizons, index the
predicted trajectory and answer the relevant queries. Predicting mobility at distant future allows to
devise applications involving high level planning and management. To facilitate this, we present
a novel spatial object, ’Representative Trajectory’, that accounts for user movements within their
ZOIs. Further, we propose means to empirically adapt the extraction of such objects depending
on user mobility behaviour. The achieved results over real world mobility traces corroborates our
solution, which achieves more than 70 % correct predictions with the best suited extraction method.
Our indexing technique, based on inverted indexing, scales with the number of users unlike the tree
structures proposed by existing works for predictive indexing. More importantly, we highlight the
limits of mobility models, that solely rely on frequently visited places in the context of distant future
predictions. Our analysis also shows that the trajectories taken in practice are often complex and as
such, the user behaviour has to be taken into account for prediction over distant future. This justifies
the requirement for such a spatial object and the indexing technique in order to improve the quality
of distant future predictions.

6.8 Future work

Our solution architecture involves several layers, each of which may be enhanced for further devel-
opments. For clarity, our initial model considered the problem in its simplest form and our future
research will foster improvements. Sets of cells are used to construct representative trajectories
and some useful notions may enrich them in order to predict the future movements with a higher
accuracy:

1. The model initially relies on a clustering algorithm to find ZOIs. Current techniques often
merge overlapping visited places to estimate them, and the resulting areas can be relatively
large. Among other possibilities, adding a notion of time at this level may help at discovering
ZOIs with fine granularities and thus avoiding some undesirable merges.

2. The model uses Markov chain and its transition probabilities for formulating predictions.
In the future, preserving some notion of time, as well as the number of occurrences of a
given cell, in the representative trajectories may help at computing these probabilities more
accurately and thus making better predictions.

134

3. The model uses relatively large overlapping cells of one square kilometre to compute repre-
sentative trajectories. We observed that when reducing the size of the cells, the model starts
suffering from the lack of precision, introduced by tracking devices. Since the discretisation
of space with a grid is really close from what occurs when a vector image goes through ras-
terisation, techniques coming from this field, such as anti-aliasing, may help at improving the
granularity of the predictions.

Such additions to the model may compromise the system in terms of scalability and is bound
to an exhaustive performance analysis. We observed that, the size of our dataset and other publicly
available datasets such as GeoLife [134] fits in the memory and are therefore not sufficiently large
enough to produce an in-depth quantitative analysis as well as relevant performance measures. A
possible solution would be to generate a large synthetic dataset. While such synthetic datasets may
be satisfying for performance and scalability measures, they can hardly grasp the complex nature of
the human behaviours required for a quantitative analysis. A solution may be to produce synthetic
traces based on the mobility models of real users with the aim to reproduce the complex behaviours.
Consequently, before investigating these improvements, our priority is to find a suitable way to val-
idate our current findings.

135

Chapter 7

Conclusion

This conclusion has two purposes. First, we take a step back by recalling our key contributions and
by linking them with each others. Second, we highlight some research opportunities that arise from
our results, giving some perspective on our on-going and future work.

7.1 Contributions

In this thesis, we have highlighted some of the effects of decentralization on location-aware comput-
ing. Our contributions consist in problem definitions, model descriptions, evaluation frameworks,
algorithms, and software implementations. Here, we recall some of these contributions by using the
three temporal perspectives that structured this thesis: present, past and future. We also highlight
how these contributions can interplay and integrate with each other.

7.1.1 Part I: Location-Based Publish and Subscribe (Present)

In Chapter 2, we have answered Q1 How can decentralized location-based publish and subscribe
systems be tested? by introducing a testbed that evaluates location-based publish and subscribe
systems. This testbed include a trajectory generator that can be used primarily to emulate mov-
ing entities in real time, but also to generate large amounts of trajectory data for batch processing.
As of this writing, the generator implements two mobility behaviours: the entities move randomly
or follow a road network. These tools have been very helpful for verifying the scalability of our
location-based publish and subscribe system described in Chapter 3 and to evaluate the trajectory
indexing algorithm described in Chapter 5. As progress continues in this field of research, being able
to create synthetic datasets and to establish a ground truth becomes critical and our tools address this
need. Unfortunately, our testbed cannot yet be used to evaluate trajectory prediction systems. Hu-

136

man mobility is far more complex than the types of behaviours implemented and, for now, requires
real location data. Further research would be necessary to generate very realistic trajectories.

In Chapter 3, we have presented a scalable and reliable architecture for location-based publish
and subscribe systems that answers Q2 How can a decentralized location-based publish and sub-
scribe system scale horizontally? This architecture uses a grid in conjunction with consistent hash-
ing to partition the data between several networked computers. As publications and subscriptions
can cover an area and hence several partitions, we have introduced a min-wise hashing agreement
that selects the partition responsible for computing a match. We have then empirically demon-
strated the horizontal scalability of our approach in a cluster made of up to 200 virtual machines.
We believe that this agreement mechanism could be of great interest in other areas, such as event
stream-processing, especially when events covers intervals on several dimensions. Therefore, we
filled a patent application for this mechanism, in order to protect it. However, as the area covered
by publications and subscriptions grows, the granularity of the grid determines the number of par-
titions that need to be contacted. Further research would therefore be needed to reduce the number
of messages required to propagate publications and subscriptions that cover very large areas.

Finally, given a routing mechanism that involves multiple network hops in a decentralized sys-
tem, we have answered Q3 How can a decentralized location-based publish and subscribe system
be reliable? by introducing a mechanism that guarantees independence of failure and preserves the
scalability of the system. Interestingly, the first step proposed in our architecture routes publications
and subscriptions by their identifiers. This scope is ideal for accessing the location histories asso-
ciated with publications and subscriptions. Therefore, it could constitute an ideal point of entry for
integrating trajectory indexing and trajectory prediction.

7.1.2 Part II: Trajectory Indexing (Past)

In Chapter 4, we have used data normalization and data deduplication to answer Q4 What are the
best access methods for large volumes of trajectories? Our solution extracts similar segments from
sequential data regardless of the type of data. We have refined this indexing method in Chapter 5 by
focusing solely on trajectory indexing. This time, instead of using segments obtained by dedupli-
cation to construct the inverted index, we have introduced a fingerprinting method inspired by data
winnowing. In contrast to the non-overlapping segments extracted by deduplication, the trajectory
fingerprints extracted by winnowing overlap and hence come with stronger guarantees regarding the
detection of similarities in the data. In addition, the fingerprints obtained with our method combine
a geohash and a regular hash, enabling us to further discriminate the data in the context of very
dense trajectory datasets.

In Chapter 4 and 5, we have answered Q5 How can we qualitatively assess an index of trajecto-
ries? by introducing a framework that uses precision and recall to decide on the ideal extent of the

137

normalization that should be applied to the data. With this framework, we have demonstrated that
our method makes a very good tradeoff between the quality of the results and the gain in terms of
performances. Therefore, we also filled a patent application for this method, in order to protect it.
Because of the lack of real trajectory datasets, we have evaluated our approach with a large synthetic
dataset created with the generator introduced in Chapter 2. Further research would be necessary to
validate our results with a real trajectory dataset. However, such datasets are not publicly available
today, mainly due to privacy concerns.

Finally, in Chapter 5, we have answered Q6 How can a very large index of trajectories be de-
centralized? by introducing an inverted index that contains the hash sums of the segments obtained
by performing deduplication on normalized data. Interestingly, such an inverted index does not need
to be reorganized or rebalanced as it grows and can be easily sharded. In addition, such an index
can also be built as the data arrives in the system. These properties make our approach ideal for
continuously indexing the data coming from a location-based publish and subscribe system, such as
the one presented in Chapter 3. Our method is limited in the sense that true positive results can be
missed. However, this limitation is also an opportunity because it is common to trade exactness for
performances when dealing with very large datasets.

7.1.3 Part III: Trajectory Prediction (Future)

In Chapter 6, we have introduced the problem of predicting future trajectories. We have answered
Q7 How can we predict future trajectories on the basis of past trajectories? by defining a model
that relies on the prediction of the next point of interest and a discretized representation of past
trajectories to infer the future trajectories that users will probably follow. On the basis of this
model, we have introduced a testbed that can be used to answer Q8 How can we qualitatively assess
the accuracy of a prediction system for future trajectories? With this testbed, we have evaluated
several approaches for constructing representative trajectories. Our solution relies extensively on an
inverted index that shares some common properties with the trajectory index presented in Chapter 5.
As our model for making trajectory predictions is embarrassingly parallel and it can be used to
answer Q9 How can a prediction system for future trajectories be decentralized? The results we
have presented in this chapter also correspond to a preliminary solution. A better model would
probably associate different probabilities with the discretized locations that form a representative
trajectory. As a consequence, further research would be necessary to refine the model and validate
its horizontal scalability.

138

7.2 On-going and Future Work

As highlighted in Section 7.1, the distinct problems addressed by our contributions closely interplay
with each other. Here, we discuss some research opportunities that could arise from addressing these
problems generically at the level of a stream-processing solution. Furthermore, we highlight some
research avenues that could be addressed at a protocols and at a tooling level.

7.2.1 Spatio-Temporal Stream-Processing

In the context of the Internet of Things, decentralized solutions that process large unbounded event
streams in near real-time have recently gained much attention. For example, Apache Spark provides
a rich map/reduce abstraction that enables developers to create applications that process data streams
in a discretized fashion, often referred to as micro-batches. Another alternative, called Apache
Kafka, provides a flexible producer-consumer abstraction largely inspired by the publish-subscribe
model. As these solutions continue to evolve, they tend to overlap and converge in terms of features,
making it difficult for developers to choose between them. It might be tempting to rely on these
solutions to solve location-aware problems. Therefore, we highlight some of the key limitations
that could motivate further research in spatio-temporal stream-processing.

Location-Aware Abstractions

In Chapter 3, we described abstractions for location-based publish and subscribe systems. Unfor-
tunately, solutions such as Apache Spark or Apache Kafka map each event to exactly one partition
because events are considered as points in time. In contrast, location-based publish and subscribe
systems deals with spatio-temporal intervals and, as a result, publications and subscriptions can
overlap with many partitions. As the partitioning abstraction is at the core of many low-level de-
cisions, it illustrates well one of the main limitations associated with existing stream-processing
solutions. Further research is needed to understand the consequence of a one-to-many relationship
between events and partitions. It might also be interesting to devise higher level abstractions to
generically address spatio-temporal stream-processing problems, such as traffic congestion detec-
tion or public transport monitoring.

Moving Processing Closer to the Data

Existing decentralized stream-processing solutions tend to move the data to a computer that is then
responsible for processing it. In Chapter 3, we have done exactly the opposite. In order to com-
pute matches with a high throughput and a low latency, we have moved the computation closer to

139

the route followed by the data. Good location-aware abstractions could help to generically move
complex computations closer to the data. For instance, as the path followed by the data involves a
geographic context, this context could be used to instantiate location-aware processing functions for
transforming or enriching the data stream in near realtime. Further research is needed to identify all
the use cases that would benefit from such an approach.

Consistency, Availability and Partition Tolerance Tradeoffs

Solutions, such as Apache Spark or Apache Kafka, assume that network partitions are rare in data
centers. These solutions usually relax availability in order to remain consistent. For example, in case
of network partition, the only nodes which remain available are those who belong to the partition
that attains a quorum. As mentioned in Section 1.2.3, consistency is often traded to guarantee a very
low latency [17, 3]. For many IoT use cases, such as vehicle to vehicle communication, low latency
is a requirement and is ensured with a mobile or vehicular ad hoc network (VANET). In addition,
the emergence of location-aware video games will probably involve similar latency requirements.
Further research might therefore be necessary to understand the consistency requirements of future
location-aware applications and to verify if such requirements could be satisfied with a decentralized
solution.

7.2.2 IoT Protocols

IoT protocols are of great importance, despite the fact that they have not been discussed in this the-
sis. For instance, in order to make systems interoperable, the Advanced Message Queuing Protocol
(AMQP) standardizes several common messaging abstractions, such as queuing or topic-based pub-
lish and subscribe messaging [124]. In contrast, the Message Queue Telemetry Transport (MQTT)
standardizes a very simple and lightweight topic-based publish and subscribe abstraction and shines
in terms of transport efficiency and security [5]. Interestingly, though both of these standards took
opposite directions, they are both used to address use cases that largely overlap. This probably indi-
cates that IoT protocols are still in their infancy and that the requirements associated with IoT have
to be further characterized. For example, the following questions could be asked: What kind of re-
liability guarantee should be provided at the level of the protocol? What is the effect of a messaging
abstraction on energy consumption? What kind of security mechanism should be provided at the
level of the protocol?

140

7.2.3 Reproducible Research

As we implemented location-aware systems, we faced the difficulty of reproducing prior results. We
also acknowledge that reproducing our own results in a large cluster would necessitate an important
time investment. Several reasons can be at the origin of this reproducibility issue: The source code
is not always publicly available; the descriptions of the algorithms are not sufficient to reproduce
the system; the descriptions provided to reproduce the results are incomplete; the datasets used in
the experiments are not publicly available; the execution environments are difficult to setup and
expensive; and the authors are now working on completely different topics. In Chapter 2, we have
introduced a testbed for location-based publish and subscribe systems, which enabled us to verify
the scalability of our system. Similar testbeds and standard datasets could probably be used for
evaluating and benchmarking different solutions that address the same problems. Such tools and
datasets will become more and more critical for addressing the lack of reproducibility that affects
research in location-aware systems, and investing in them is probably the way to go.

141

Bibliography

[1] Apache lucene. http://lucene.apache.org/.

[2] JTS topology suite. http://www.vividsolutions.com/jts/.

[3] Daniel J Abadi. Consistency tradeoffs in modern distributed database system design.
Computer-IEEE Computer Magazine, 45(2):37, 2012.

[4] Bhuvan Bamba, Ling Liu, Arun Iyengar, and Philip S Yu. Safe region techniques for fast
spatial alarm evaluation. 2008.

[5] Andrew Banks and Rahul Gupta. Mqtt version 3.1. 1. OASIS standard, 29, 2014.

[6] Paul Baran. On distributed communications networks. IEEE transactions on Communica-
tions Systems, 12(1):1–9, 1964.

[7] Paolo Bellavista, Antonio Corradi, Mario Fanelli, and Luca Foschini. A survey of context
data distribution for mobile ubiquitous systems. ACM Computing Surveys (CSUR), 44(4):24,
2012.

[8] Jon Louis Bentley. Multidimensional binary search trees used for associative searching. Com-
munications of the ACM, 18(9):509–517, 1975.

[9] Deepavali Bhagwat, Kave Eshghi, and Pankaj Mehra. Content-based document routing and
index partitioning for scalable similarity-based searches in a large corpus. In Proceedings of
the 13th ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 105–112. ACM, 2007.

[10] Nikolaj Bjørner, Andreas Blass, and Yuri Gurevich. Content-dependent chunking for differ-
ential compression, the local maximum approach. Journal of Computer and System Sciences,
76(3-4):154–203, 2010.

[11] Deepak R Bobbarjung, Suresh Jagannathan, and Cezary Dubnicki. Improving duplicate elim-
ination in storage systems. ACM Transactions on Storage (TOS), 2(4):424–448, 2006.

142

http://lucene.apache.org/
http://www.vividsolutions.com/jts/

[12] Behnaz Bostanipour and Benoı̂t Garbinato. Improving neighbor detection for proximity-
based mobile applications. In Network Computing and Applications (NCA), 2013 12th IEEE
International Symposium on, pages 177–182. IEEE, 2013.

[13] Behnaz Bostanipour and Benoı̂t Garbinato. Using virtual mobile nodes for neighbor detection
in proximity-based mobile applications. In Network Computing and Applications (NCA),
2014 IEEE 13th International Symposium on, pages 9–16. IEEE, 2014.

[14] Behnaz Bostanipour and Benoı̂t Garbinato. Effective and efficient neighbor detection for
proximity-based mobile applications. Computer Networks, 79:216–235, 2015.

[15] Behnaz Bostanipour and Benoı̂t Garbinato. Neighbor detection based on multiple virtual
mobile nodes. In Parallel, Distributed, and Network-Based Processing (PDP), 2016 24th
Euromicro International Conference on, pages 322–327. IEEE, 2016.

[16] Behnaz Bostanipour, Benoı̂t Garbinato, and Adrian Holzer. Spotcast–a communication ab-
straction for proximity-based mobile applications. In Network Computing and Applications
(NCA), 2012 11th IEEE International Symposium on, pages 121–129. IEEE, 2012.

[17] Eric Brewer. Cap twelve years later: How the” rules” have changed. Computer, 45(2):23–29,
2012.

[18] Sergey Brin, James Davis, and Hector Garcia-Molina. Copy detection mechanisms for digital
documents. In ACM SIGMOD Record, volume 24, pages 398–409. Acm, 1995.

[19] Thomas Brinkhoff. Generating network-based moving objects. In Scientific and Statistical
Database Management, 2000. Proceedings. 12th International Conference on, pages 253–
255. IEEE, 2000.

[20] Andrei Z Broder. On the resemblance and containment of documents. In Compression and
Complexity of Sequences 1997. Proceedings, pages 21–29. IEEE, 1997.

[21] Andrei Z Broder, Steven C Glassman, Mark S Manasse, and Geoffrey Zweig. Syntactic
clustering of the web. Computer Networks and ISDN Systems, 29(8):1157–1166, 1997.

[22] V. Prasad Chakka, Adam Everspaugh, and Jignesh M. Patel. Indexing large trajectory data
sets with seti. In CIDR, 2003.

[23] V Prasad Chakka, Adam C Everspaugh, and Jignesh M Patel. Indexing large trajectory data
sets with seti. Ann Arbor, 1001(48109-2122):12, 2003.

[24] Bertil Chapuis and Benoı̂t Garbinato. Knowledgeable chunking. In International Conference
on Networked Systems, pages 456–460. Springer, Cham, 2015.

[25] Bertil Chapuis and Benoı̂t Garbinato. Scaling and load testing location-based publish and
subscribe. In 37th International Conference on Distributed Computing Systems (ICDCS),
pages 2543–2546. IEEE, 2017.

143

[26] Bertil Chapuis and Benoı̂t Garbinato. Geodabs: Trajectory indexing meets fingerprinting at
scale. In 38th International Conference on Distributed Computing Systems (ICDCS). IEEE,
2018.

[27] Bertil Chapuis, Benoı̂t Garbinato, and Periklis Andritsos. Throughput: A key performance
measure of content-defined chunking algorithms. In 36th International Conference on Dis-
tributed Computing Systems Workshops (ICDCSW), pages 7–12. IEEE, 2016.

[28] Bertil Chapuis, Benoı̂t Garbinato, and Periklis Andritsos. An efficient type-agnostic approach
for finding sub-sequences in data. In 19th International Conference on High Performance
Computing and Communications; 15th International Conference on Smart City; 3rd Inter-
national Conference on Data Science and Systems (HPCC/SmartCity/DSS), pages 270–277.
IEEE, 2017.

[29] Bertil Chapuis, Benoı̂t Garbinato, and Lucas Mourot. A horizontally scalable and reliable
architecture for location-based publish-subscribe. In 36th Symposium on Reliable Distributed
Systems (SRDS), pages 74–83. IEEE, 2017.

[30] Bertil Chapuis, Arielle Moro, Vaibhav Kulkarni, and Benoı̂t Garbinato. Capturing com-
plex behaviour for predicting distant future trajectories. In Proceedings of the 5th ACM
SIGSPATIAL International Workshop on Mobile Geographic Information Systems, pages 64–
73. ACM, 2016.

[31] Su Chen, Christian S Jensen, and Dan Lin. A benchmark for evaluating moving object
indexes. Proceedings of the VLDB Endowment, 1(2):1574–1585, 2008.

[32] Xiaoyan Chen, Ying Chen, and Fangyan Rao. An efficient spatial publish/subscribe system
for intelligent location-based services. In Proceedings of the 2nd international workshop on
Distributed event-based systems, pages 1–6. ACM, 2003.

[33] Mauro Cherubini, Alexandre Meylan, Bertil Chapuis, Mathias Humbert, Igor Bilogrevic, and
Kévin Huguenin. Towards usable checksums: Automating the integrity verification of web
downloads for the masses. In 25th ACM Conference on Computer and Communications
Security. ACM, 2018.

[34] Meng-Fen Chiang, Wen-Yuan Zhu, Wen-Chih Peng, and S Yu Philip. Distant-time location
prediction in low-sampling-rate trajectories. In 2013 IEEE 14th International Conference on
Mobile Data Management, volume 1, pages 117–126. IEEE, 2013.

[35] Bram Cohen. The bittorrent protocol specification, 2008.

[36] Gianpaolo Cugola and Jose Enrique Munoz de Cote. On introducing location awareness
in publish-subscribe middleware. In 25th IEEE International Conference on Distributed
Computing Systems Workshops, pages 377–382. IEEE, 2005.

144

[37] Gianpaolo Cugola and Alessandro Margara. High-performance location-aware publish-
subscribe on gpus. In ACM/IFIP/USENIX International Conference on Distributed Systems
Platforms and Open Distributed Processing, pages 312–331. Springer, 2012.

[38] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash
Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and Werner Vo-
gels. Dynamo: amazon’s highly available key-value store. ACM SIGOPS Operating Systems
Review, 41(6):205–220, 2007.

[39] Pranita Dewan, Raghu Ganti, and Mudhakar Srivatsa. Som-tc: Self-organizing map for hier-
archical trajectory clustering. In Distributed Computing Systems (ICDCS), 2017 IEEE 37th
International Conference on, pages 1042–1052. IEEE, 2017.

[40] Christian Düntgen, Thomas Behr, and Ralf Hartmut Güting. Berlinmod: a benchmark for
moving object databases. The VLDB Journal—The International Journal on Very Large
Data Bases, 18(6):1335–1368, 2009.

[41] Thomas Eiter and Heikki Mannila. Computing discrete fréchet distance. Technical report,
Tech. Report CD-TR 94/64, Information Systems Department, Technical University of Vi-
enna, 1994.

[42] Kave Eshghi and Hsiu Khuern Tang. A framework for analyzing and improving content-
based chunking algorithms. Hewlett-Packard Labs Technical Report TR, 30:2005, 2005.

[43] P Th Eugster, Benoı̂t Garbinato, and Adrian Holzer. Location-based publish/subscribe. In
Fourth IEEE International Symposium on Network Computing and Applications, pages 279–
282. IEEE, 2005.

[44] Patrick Eugster, Benoit Garbinato, and Adrian Holzer. Pervaho: A development & test plat-
form for mobile ad hoc applications. In Mobile and Ubiquitous Systems-Workshops, 2006.
3rd Annual International Conference on, pages 1–5. IEEE, 2006.

[45] Patrick Eugster, Benoı̂t Garbinato, and Adrian Holzer. Design and implementation of the
pervaho middleware for mobile context-aware applications. In e-Technologies, 2008 Inter-
national MCETECH Conference on, pages 125–135. IEEE, 2008.

[46] Patrick Eugster, Benoı̂t Garbinato, and Adrian Holzer. Pervaho: A specialized middleware
for mobile context-aware applications. Electronic Commerce Research, 9(4):245–268, 2009.

[47] Patrick Th Eugster, Benoit Garbinato, and Adrian Holzer. Middleware support for context-
aware applications. In Middleware for Network Eccentric and Mobile Applications, pages
305–322. Springer, 2009.

[48] Tom Fawcett. Roc graphs: Notes and practical considerations for researchers. Machine
learning, 31(1):1–38, 2004.

145

[49] Raphael A Finkel and Jon Louis Bentley. Quad trees a data structure for retrieval on com-
posite keys. Acta informatica, 4(1):1–9, 1974.

[50] George Forman, Kave Eshghi, and Stephane Chiocchetti. Finding similar files in large doc-
ument repositories. In Proceedings of the eleventh ACM SIGKDD international conference
on Knowledge discovery in data mining, pages 394–400. ACM, 2005.

[51] Sébastien Gambs, Marc-Olivier Killijian, and Miguel Núñez del Prado Cortez. Show me
how you move and i will tell you who you are. In Proceedings of the 3rd ACM SIGSPATIAL
International Workshop on Security and Privacy in GIS and LBS, pages 34–41. ACM, 2010.

[52] Sébastien Gambs, Marc-Olivier Killijian, and Miguel Núnez del Prado Cortez. Towards
temporal mobility markov chains. In 1st International Workshop on Dynamicity Collocated
with OPODIS 2011, Toulouse, France, pages 2–pages, 2011.

[53] Sébastien Gambs, Marc-Olivier Killijian, and Miguel Núñez del Prado Cortez. Next place
prediction using mobility markov chains. In Proceedings of the First Workshop on Measure-
ment, Privacy, and Mobility, page 3. ACM, 2012.

[54] Amir Gandomi and Murtaza Haider. Beyond the hype: Big data concepts, methods, and
analytics. International Journal of Information Management, 35(2):137–144, 2015.

[55] Benoı̂t Garbinato, Adrian Holzer, and François Vessaz. Six-shot broadcast: A context-aware
algorithm for efficient message diffusion in manets. In OTM Confederated International
Conferences” On the Move to Meaningful Internet Systems”, pages 625–638. Springer, 2008.

[56] Benoit Garbinato, Adrian Holzer, and François Vessaz. Context-aware broadcasting ap-
proaches in mobile ad hoc networks. Computer Networks, 54(7):1210–1228, 2010.

[57] Benoit Garbinato, Adrian Holzer, and Francois Vessaz. Six-shot multicast: A location-aware
strategy for efficient message routing in manets. In Network Computing and Applications
(NCA), 2010 9th IEEE International Symposium on, pages 1–9. IEEE, 2010.

[58] Benoı̂t Garbinato and Philippe Rupp. From ad hoc networks to ad hoc applications. In
Proceedings of the 7th International Conference on Telecommunications, pages 145–149.
Citeseer, 2003.

[59] Julien Gascon-Samson, Franz-Philippe Garcia, Bettina Kemme, and Jörg Kienzle. Dy-
namoth: A scalable pub/sub middleware for latency-constrained applications in the cloud.
In Distributed Computing Systems (ICDCS), 2015 IEEE 35th International Conference on,
pages 486–496. IEEE, 2015.

[60] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility of consistent, avail-
able, partition-tolerant web services. ACM SIGACT News, 33(2):51–59, 2002.

146

[61] Chong Yang Goh, Justin Dauwels, Nikola Mitrovic, Muhammad Tayyab Asif, Ali Oran, and
Patrick Jaillet. Online map-matching based on hidden markov model for real-time traffic
sensing applications. In Intelligent Transportation Systems (ITSC), 2012 15th International
IEEE Conference on, pages 776–781. IEEE, 2012.

[62] Rachid Guerraoui and Luis Rodrigues. Introduction to reliable distributed programming.
Springer Science & Business Media, 2006.

[63] Long Guo, Dongxiang Zhang, Guoliang Li, Kian-Lee Tan, and Zhifeng Bao. Location-
aware pub/sub system: When continuous moving queries meet dynamic event streams. In
Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data,
pages 843–857. ACM, 2015.

[64] Antonin Guttman. R-trees: A dynamic index structure for spatial searching, volume 14.
ACM, 1984.

[65] Mordechai Haklay and Patrick Weber. Openstreetmap: User-generated street maps. IEEE
Pervasive Computing, 7(4):12–18, 2008.

[66] Mahady Hasan, Muhammad Aamir Cheema, Xuemin Lin, and Ying Zhang. Efficient con-
struction of safe regions for moving knn queries over dynamic datasets. In International
Symposium on Spatial and Temporal Databases, pages 373–379. Springer, 2009.

[67] Nevin Heintze et al. Scalable document fingerprinting. In 1996 USENIX workshop on elec-
tronic commerce, volume 3, 1996.

[68] Abdeltawab M Hendawi, Jie Bao, Mohamed F Mokbel, and Mohamed Ali. Predictive tree:
An efficient index for predictive queries on road networks. In 2015 IEEE 31st International
Conference on Data Engineering, pages 1215–1226. IEEE, 2015.

[69] Alan R Hevner. A three cycle view of design science research. Scandinavian journal of
information systems, 19(2):4, 2007.

[70] Adrian Holzer, Patrick Eugster, and Benoit Garbinato. Evaluating implementation strate-
gies for location-based multicast addressing. IEEE Transactions on Mobile Computing,
12(5):855–867, 2013.

[71] Adrian Holzer, Patrick Eugster, and Benoıˆt Garbinato. Alps–adaptive location-based pub-
lish/subscribe. Computer Networks, 56(12):2949–2962, 2012.

[72] Adrian Holzer, Sten Govaerts, Jan Ondrus, Andrii Vozniuk, David Rigaud, Benoı̂t Garbinato,
and Denis Gillet. Speakup–a mobile app facilitating audience interaction. In International
Conference on Web-Based Learning, pages 11–20. Springer, 2013.

147

[73] Adrian Holzer, François Vessaz, Samuel Pierre, and Benoı̂t Garbinato. Plan-b: Proximity-
based lightweight adaptive network broadcasting. In Network Computing and Applications
(NCA), 2011 10th IEEE International Symposium on, pages 265–270. IEEE, 2011.

[74] Jiafeng Hu, Reynold Cheng, Dingming Wu, and Beihong Jin. Efficient top-k subscription
matching for location-aware publish/subscribe. In International Symposium on Spatial and
Temporal Databases, pages 333–351. Springer, 2015.

[75] Yun Chao Hu, Milan Patel, Dario Sabella, Nurit Sprecher, and Valerie Young. Mobile edge
computing—a key technology towards 5g. ETSI white paper, 11(11):1–16, 2015.

[76] Weihuang Huang, Guoliang Li, Kian-Lee Tan, and Jianhua Feng. Efficient safe-region con-
struction for moving top-k spatial keyword queries. In Proceedings of the 21st ACM in-
ternational conference on Information and knowledge management, pages 932–941. ACM,
2012.

[77] Hoyoung Jeung, Qing Liu, Heng Tao Shen, and Xiaofang Zhou. A hybrid prediction model
for moving objects. In 2008 IEEE 24th International Conference on Data Engineering, pages
70–79. Ieee, 2008.

[78] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew Levine, and Daniel
Lewin. Consistent hashing and random trees: Distributed caching protocols for relieving hot
spots on the world wide web. In Proceedings of the twenty-ninth annual ACM symposium on
Theory of computing, pages 654–663. ACM, 1997.

[79] David Karger, Alex Sherman, Andy Berkheimer, Bill Bogstad, Rizwan Dhanidina, Ken
Iwamoto, Brian Kim, Luke Matkins, and Yoav Yerushalmi. Web caching with consistent
hashing. Computer Networks, 31(11):1203–1213, 1999.

[80] Peter Karich and S Schröder. Graphhopper. http://www.graphhopper.com, last accessed,
4(2):15, 2014.

[81] Dong-Oh Kim, Kang-Jun Lee, Dong-Suk Hong, and Ki-Joon Han. An efficient indexing tech-
nique for location prediction of moving objects. In International Conference on Knowledge-
Based and Intelligent Information and Engineering Systems, pages 1–9. Springer, 2007.

[82] Sven Kosub. A note on the triangle inequality for the jaccard distance. arXiv preprint
arXiv:1612.02696, 2016.

[83] Jay Kreps, Neha Narkhede, Jun Rao, et al. Kafka: A distributed messaging system for log
processing. In Proceedings of the NetDB, pages 1–7, 2011.

[84] Erik Kruus, Cristian Ungureanu, and Cezary Dubnicki. Bimodal content defined chunking
for backup streams. In FAST, pages 239–252, 2010.

148

[85] Vaibhav Kulkarni, Bertil Chapuis, and Benoı̂t Garbinato. Privacy-preserving location-based
services by using intel sgx. In Proceedings of the First International Workshop on Human-
centered Sensing, Networking, and Systems, pages 13–18. ACM, 2017.

[86] Vaibhav Kulkarni, Arielle Moro, Bertil Chapuis, and Benoı̂t Garbinato. Extracting hotspots
without a-priori by enabling signal processing over geospatial data. In Proceedings of the
25th ACM SIGSPATIAL International Conference on Advances in Geographic Information
Systems, page 79. ACM, 2017.

[87] Vaibhav Kulkarni, Arielle Moro, Bertil Chapuis, and Benoı̂t Garbinato. Capstone: Mobility
modeling on smartphones to achieve privacy by design. In International Conference on Trust,
Security And Privacy In Computing And Communications (TrustCom). IEEE, 2018.

[88] Avinash Lakshman and Prashant Malik. Cassandra: a decentralized structured storage sys-
tem. ACM SIGOPS Operating Systems Review, 44(2):35–40, 2010.

[89] J. K. Laurila, Daniel Gatica-Perez, I. Aad, Blom J., Olivier Bornet, Trinh-Minh-Tri Do,
O. Dousse, J. Eberle, and M. Miettinen. The mobile data challenge: Big data for mobile
computing research. In Pervasive Computing, 2012.

[90] Juha K Laurila, Daniel Gatica-Perez, Imad Aad, Olivier Bornet, Trinh-Minh-Tri Do, Olivier
Dousse, Julien Eberle, Markus Miettinen, et al. The mobile data challenge: Big data for
mobile computing research. In Pervasive Computing, number EPFL-CONF-192489, 2012.

[91] Joseph J LaViola. Double exponential smoothing: an alternative to kalman filter-based pre-
dictive tracking. In Proceedings of the workshop on Virtual environments 2003, pages 199–
206. ACM, 2003.

[92] Daniel Lemire, Owen Kaser, Nathan Kurz, Luca Deri, Chris O’Hara, François Saint-Jacques,
and Gregory Ssi-Yan-Kai. Roaring bitmaps: Implementation of an optimized software li-
brary. arXiv preprint arXiv:1709.07821, 2017.

[93] Guoliang Li, Yang Wang, Ting Wang, and Jianhua Feng. Location-aware publish/subscribe.
In Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 802–810. ACM, 2013.

[94] Guanlin Lu, Yu Jin, and David HC Du. Frequency based chunking for data de-duplication. In
Modeling, Analysis & Simulation of Computer and Telecommunication Systems (MASCOTS),
2010 IEEE International Symposium on, pages 287–296. IEEE, 2010.

[95] Xin Lu, Erik Wetter, Nita Bharti, Andrew J Tatem, and Linus Bengtsson. Approaching the
limit of predictability in human mobility. Scientific reports, 3:srep02923, 2013.

[96] Udi Manber et al. Finding similar files in a large file system. In Usenix Winter, volume 94,
pages 1–10, 1994.

149

[97] Christopher D Manning, Prabhakar Raghavan, Hinrich Schütze, et al. Introduction to infor-
mation retrieval, volume 1. Cambridge university press Cambridge, 2008.

[98] Wesley Mathew, Ruben Raposo, and Bruno Martins. Predicting future locations with hidden
markov models. In Proceedings of the 2012 ACM conference on ubiquitous computing, pages
911–918. ACM, 2012.

[99] Petar Maymounkov and David Mazieres. Kademlia: A peer-to-peer information system
based on the xor metric. In International Workshop on Peer-to-Peer Systems, pages 53–65.
Springer, 2002.

[100] Dutch T Meyer and William J Bolosky. A study of practical deduplication. ACM Transactions
on Storage (TOS), 7(4):14, 2012.

[101] Mohamed F Mokbel, Louai Alarabi, Jie Bao, Ahmed Eldawy, Amr Magdy, Mohamed Sar-
wat, Ethan Waytas, and Steven Yackel. Mntg: an extensible web-based traffic generator. In
International Symposium on Spatial and Temporal Databases, pages 38–55. Springer, 2013.

[102] Athicha Muthitacharoen, Benjie Chen, and David Mazieres. A low-bandwidth network file
system. In ACM SIGOPS Operating Systems Review, volume 35, pages 174–187. ACM,
2001.

[103] Julio C Navas and Tomasz Imielinski. Geocast—geographic addressing and routing. In
Proceedings of the 3rd annual ACM/IEEE international conference on Mobile computing
and networking, pages 66–76. ACM, 1997.

[104] Paul Newson and John Krumm. Hidden markov map matching through noise and sparse-
ness. In Proceedings of the 17th ACM SIGSPATIAL international conference on advances in
geographic information systems, pages 336–343. ACM, 2009.

[105] Gustavo Niemeyer. Geohash, 2008.

[106] Alexander Osterwalder, Yves Pigneur, Greg Bernarda, and Alan Smith. Value proposition
design. Campus Verlag, 2015.

[107] Jignesh M Patel, Yun Chen, and V Prasad Chakka. Stripes: an efficient index for predicted
trajectories. In Proceedings of the 2004 ACM SIGMOD international conference on Man-
agement of data, pages 635–646. ACM, 2004.

[108] Nikos Pelekis, Stylianos Sideridis, Panagiotis Tampakis, and Yannis Theodoridis. Her-
moupolis: a semantic trajectory generator in the data science era. SIGSPATIAL Special,
7(1):19–26, 2015.

[109] Dieter Pfoser, Christian S Jensen, Yannis Theodoridis, et al. Novel approaches to the indexing
of moving object trajectories. In VLDB, pages 395–406, 2000.

150

[110] Sean Quinlan and Sean Dorward. Venti: A new approach to archival storage. In FAST,
volume 2, pages 89–101, 2002.

[111] Michael O Rabin. Fingerprinting by random polynomials. Center for Research in Computing
Techn., Aiken Computation Laboratory, Univ., 1981.

[112] Philippe Rigaux, Michel Scholl, and Agnes Voisard. Spatial databases: with application to
GIS. Morgan Kaufmann, 2001.

[113] Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In IFIP/ACM International Conference on
Distributed Systems Platforms and Open Distributed Processing, pages 329–350. Springer,
2001.

[114] Simonas Šaltenis, Christian S Jensen, Scott T Leutenegger, and Mario A Lopez. Indexing the
positions of continuously moving objects, volume 29. ACM, 2000.

[115] Saul Schleimer, Daniel S Wilkerson, and Alex Aiken. Winnowing: local algorithms for
document fingerprinting. In Proceedings of the 2003 ACM SIGMOD international conference
on Management of data, pages 76–85. ACM, 2003.

[116] Vinay Setty, Maarten van Steen, Roman Vitenberg, and Spyros Voulgaris. Poldercast: Fast,
robust, and scalable architecture for p2p topic-based pub/sub. In Middleware, 2012.

[117] N Sornin, M Luis, T Eirich, T Kramp, and O Hersent. Lorawan specification. LoRa alliance,
2015.

[118] Mudhakar Srivatsa, Raghu Ganti, and Prasant Mohapatra. On the limits of subsampling of
location traces. In Distributed Computing Systems (ICDCS), 2017 IEEE 37th International
Conference on, pages 1032–1041. IEEE, 2017.

[119] Bo Tang, Man Lung Yiu, Kyriakos Mouratidis, and Kai Wang. Efficient motif discovery in
spatial trajectories using discrete fréchet distance. EDBT, 2017.

[120] Yufei Tao, Christos Faloutsos, Dimitris Papadias, and Bin Liu. Prediction and indexing of
moving objects with unknown motion patterns. In Proceedings of the 2004 ACM SIGMOD
international conference on Management of data, pages 611–622. ACM, 2004.

[121] Yufei Tao, Dimitris Papadias, and Jimeng Sun. The tpr*-tree: an optimized spatio-temporal
access method for predictive queries. In Proceedings of the 29th international conference on
Very large data bases-Volume 29, pages 790–801. VLDB Endowment, 2003.

[122] David G Thaler and Chinya V Ravishankar. Using name-based mappings to increase hit
rates. IEEE/ACM Transactions on Networking (TON), 6(1):1–14, 1998.

151

[123] François Vessaz, Benoı̂t Garbinato, Arielle Moro, and Adrian Holzer. Developing, deploying
and evaluating protocols with manetlab. In Networked Systems, pages 89–104. Springer,
2013.

[124] Steve Vinoski. Advanced message queuing protocol. IEEE Internet Computing, 10(6), 2006.

[125] Xiang Wang, Ying Zhang, Wenjie Zhang, Xuemin Lin, and Wei Wang. Ap-tree: efficiently
support location-aware publish/subscribe. The VLDB Journal—The International Journal on
Very Large Data Bases, 24(6):823–848, 2015.

[126] Dingming Wu, Man Lung Yiu, Christian S Jensen, and Gao Cong. Efficient continuously
moving top-k spatial keyword query processing. In 2011 IEEE 27th International Conference
on Data Engineering, pages 541–552. IEEE, 2011.

[127] George Xylomenos, Xenofon Vasilakos, Christos Tsilopoulos, Vasilios A Siris, and George C
Polyzos. Caching and mobility support in a publish-subscribe internet architecture. IEEE
Communications Magazine, 50(7):52–58, 2012.

[128] Yutaka Yanagisawa. Predictive indexing for position data of moving objects in the real world.
In Transactions on Computational Science VI, pages 77–94. Springer, 2009.

[129] Byoung-Kee Yi, HV Jagadish, and Christos Faloutsos. Efficient retrieval of similar time
sequences under time warping. In Data Engineering, 1998. Proceedings., 14th International
Conference on, pages 201–208. IEEE, 1998.

[130] Josh Jia-Ching Ying, Wang-Chien Lee, Tz-Chiao Weng, and Vincent S Tseng. Semantic
trajectory mining for location prediction. In Proceedings of the 19th ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems, pages 34–43.
ACM, 2011.

[131] Minghe Yu, Guoliang Li, Ting Wang, Jianhua Feng, and Zhiguo Gong. Efficient filtering
algorithms for location-aware publish/subscribe. IEEE Transactions on Knowledge and Data
Engineering, 27(4):950–963, 2015.

[132] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion Stoica.
Spark: Cluster computing with working sets. HotCloud, 10(10-10):95, 2010.

[133] Ye Zhao, Kyungbaek Kim, and Nalini Venkatasubramanian. Dynatops: a dynamic topic-
based publish/subscribe architecture. In DEBS, 2013.

[134] Yu Zheng, Hao Fu, Xing Xie, Wei-Ying Ma, and Quannan Li. Geolife gps trajectory dataset-
user guide, 2011.

[135] Yu Zheng, Xing Xie, and Wei-Ying Ma. Geolife: A collaborative social networking service
among user, location and trajectory. IEEE Data Eng. Bull., 33(2):32–39, 2010.

152

	Introduction
	From Location Awareness to Big Data
	Volume
	Velocity
	Variety
	Veracity
	Research Challenges

	From Fully Distributed to Decentralized Systems
	Centralized Systems
	Distributed Systems
	Decentralized Systems
	Research Opportunities

	Benefits of Decentralization for Location-Aware Systems
	Horizontal Scalability
	Service-Level Agreement
	Uniform Data Access
	Decentralized Middleware in the Cloud

	Problem Statement
	Scope of the Research
	Research Questions

	Organization and Structure
	Part I: Location-Based Publish and Subscribe (Present)
	Part II: Trajectory Indexing (Past)
	Part III: Trajectory Prediction (Future)

	Research Methodology
	Complete List of Publications

	I Present: Location-based publish and subscribe
	Scaling and Load-testing Location-based publish and subscribe
	Introduction
	Middleware Architecture
	Grid and Tiles
	Consistent Hashing
	Message Routing

	Traffic Data and Load Testing
	Batch Generation
	Real-time Generation
	Load Testing

	Demonstration
	Cluster Configuration
	Cluster Monitoring
	End-User Interactions

	Conclusion & Future Work

	A Horizontally Scalable and Reliable Architecture for Location-Based Publish-Subscribe
	Introduction
	Location-Based Publish-Subscribe
	Achieving Horizontal Scalability
	Contributions & Roadmap

	Scaling location-based publish-subscribe
	Client-Side Model
	Server-Side Model
	Scaling horizontally

	A Horizontally Scalable and Reliable Architecture
	Range Partitioning
	Consistent Hashing
	Min-wise Hashing Agreement
	Detailed Architecture and Algorithms
	Fault Tolerance and Reliability

	Theoretical Evaluation
	Experimental Evaluation
	Evaluation setup
	Cluster settings
	Horizontal scalability
	Reliability overhead
	Load, memory and latency

	Related Work
	Location-Based Publish and Subscribe
	Continuous KNN Queries
	Consistent Hashing

	Conclusion and future work

	II Past: Indexing Trajectories
	An Efficient Type-agnostic Approach for Finding Sub-sequences in Data
	Introduction
	Contributions

	Overall Approach
	Background and Model
	Tokenization
	Normalization
	Data Deduplication

	Token-based chunking
	Normalization framework
	Evaluation
	Dataset
	Queries
	Configuration
	Environment
	Chunk distribution
	Index size
	Efficiency
	Effectiveness

	Toward spatial data
	Dataset
	Normalization
	Preliminary results

	Related Work
	Conclusion & Future Work

	Geodabs: Trajectory Indexing Meets Fingerprinting at Scale
	Introduction
	Fingerprinting to the Rescue
	Contribution and Roadmap

	Trajectory-based querying
	Moving Objects, Trajectories and Distances
	Finding Similar Trajectories and Motifs

	Background and related work
	Information Retrieval
	Fingerprinting
	Geohashing

	Fingerprinting with Geodabs
	Trajectory Fingerprinting and Indexing

	Trajectory Normalization
	Normalizing with Geohash
	Normalizing with Map Matching
	Extent of the Normalization

	Evaluation
	Evaluation Setup
	The Cost of Computing Distances
	The Cost of Discovering Motifs
	The Cost of Indiscrimination
	The Distribution of the Index

	Conclusion

	III Future: Predicting Trajectories
	Capturing complex behaviour for predicting distant future trajectories
	Introduction
	Related work
	System Model and Definitions
	Users and Locations
	Clusters and Zones of Interest
	Trajectories
	Mobility Prediction Model

	Predicting Trajectories
	Evaluating Representative Trajectories
	Building Representative Trajectories

	Solution Architecture
	Prediction Model Extraction
	Inverted Index Update
	Answering the query

	Evaluation and Discussion
	Conclusion
	Future work

	Conclusion
	Contributions
	Part I: Location-Based Publish and Subscribe (Present)
	Part II: Trajectory Indexing (Past)
	Part III: Trajectory Prediction (Future)

	On-going and Future Work
	Spatio-Temporal Stream-Processing
	IoT Protocols
	Reproducible Research

	Bibliography

