Echo: A CRDT-based Framework for
Highly-Available Applications with
Domain-Specific Properties

Alexandre Piveteau
Ecole Polytechnique Fédérale de Lausanne
Switzerland
alexandre.piveteau @epfl.ch

Abstract—Conflict-free Replicated Data Types (CRDTs) are
a well-known mechanism for maintaining consistency and re-
liability in high-availability applications, especially for opti-
mistic replication. However, current CRDT implementations
often fall short in preserving domain-specific properties critical
for practical applications. For instance, in distributed file systems
with a directory tree, it is crucial to prevent cyclic paths
when moving documents concurrently. This demonstration paper
presents Echoﬂ a framework designed to convert any stateful,
single-node application with unique domain-specific requirements
into a replicated application. Echo, implemented as a causally
and totally ordered replicated event log, introduces a generic
CRDT abstraction to developers. It guarantees strong eventual
convergence and preserves domain-specific properties related
to the semantics of the application. Using a collaborative text
editor as a case study, we empirically establish the suitability of
our framework for enabling the replication of applications with
rich semantics. Finally, we assess the efficiency of Echo through
multiple benchmarks.

I. INTRODUCTION

Originally termed Brewer’s Conjecture and later known
as the CAP Theorem, the impossibility of simultaneously
achieving consistency, availability, and partition tolerance
in distributed systems is a well-known result [6]. To ad-
dress this impossibility, the CALM (Consistency As Logical
Monotonicity) theorem was introduced. It demonstrates the
feasibility of designing a distributed system that is eventually
convergent, available and partition tolerant by composing
monotonic data structures or algorithms [7]]. Conflict-Free
Replicated Data Types (CRDTs) are an application of the
CALM theorem, since they are monotonic data structures by
design [18]. CRDTs come in two forms shown to be equiva-
lent [18]: Commutative Replicated Data Types (CmRDTs) are
operation-based and rely on causal broadcasting of operations;
Convergent Replicated Data Types (CvRDTs) are state-based
and rely on gossiping to propagate their state to all replicas.

CRDTs are typically used to implement optimistic replica-
tion in highly-available distributed applications. However, they
often lack the ability to enforce domain-specific properties.
For example, in distributed file systems, there is a need to

!{redacted name for blind review]

HES-SO, HEIG-VD, IICT

bertil.chapuis@heig-vd.ch

Benoit Garbinato
Université de Lausanne
Switzerland
benoit.garbinato @unil.ch

Bertil Chapuis

Switzerland

maintain a tree structure without cyclic links and ensure
unique file names in each directory. Collaborative editing
applications require atomic operations for cursor movements
in texts. Several libraries, discussed in Section[V1] offer ready-
to-use CRDTs for building these applications. However, few
extend beyond core eventual convergence semantics to enforce
domain-specific properties.

The main contribution of this demonstration paper consists
in a generic CRDT-based framework named Echo, which
enables developers to define and enforce domain-specific prop-
erties in distributed applications managing replicated states.
The novelty of our approach does not lie in the underlying
CRDT mechanisms, but in the reduced development effort
required to introduce replication in any application that fol-
lows the application model presented in Section [[TI, without
requiring an extensive rewrite. This is achieved by relying on
a generic log-based CRDT. If the original application does not
follow this model, it might be necessary first to refactor it to
conform to the application model. This is no different than
most software frameworks, which usually put constraints on
the architecture of applications using them in exchange for the
simplification they offer.

Practically, our generic CRDT relies on a causally and
totally ordered replicated operation log. The remainder of this
paper is organized as follows. Section [lI| defines our system
model, provides background definitions, and illustrates how
Echo can be used to add replication to existing applications.
Section [lII|delves into Echo’s internals, demonstrating its capa-
bility to convert local application models into replicated ones.
Section |[V|demonstrates how we used Echo to develop a fully
functional collaborative text editor. Performance evaluation
and analysis of Echo are presented in Section [V] Related work
is reviewed in Section and the paper concludes with a
discussion on future work in Section

II. THE ECHO FRAMEWORK

We consider a peer-to-peer distributed system with equipo-
tent and asynchronous processes. Processes follow a crash-
recovery fault model [4], i.e., they do not exhibit Byzantine
behaviors. New processes may join at any time, i.e., their

number may vary over time. When a new process joins, a
unique identifier is assigned to it. Processes execute appli-
cation models by exchanging operations through a fair-lossy
broadcast. Intuitively, an application model is responsible for
enforcing domain-specific properties. Hereafter, we formally
define the concept of application model.

Definition 1 (Application model). Let M be the set of all
the possible application states, E be the set of application
operations, and V be the set of application values. An
application model is a triplet, (init opp, QUETYapp, updateqy,),
where:

o initap, € M is the initial state,
o qQUETYqapp : M — V is the query function, and
o updateqp, : M x E — M is the update function.

The query function computes the current value of the model,
while the update function installs its new state. Together,
these functions ensure the domain-specific properties of the
application model. The concept of application model is rooted
in the unidirectional data flow paradigm, which distinguishes
operations from state. In this model, operations are explicit
and yield updated immutable states.

Example 1 (Shopping cart). To illustrate the application
model concept, consider a basic shopping cart system where
users can add or remove items to purchase. The shopping cart
system must enforce domain-specific properties, particularly
accommodating concurrent additions or deletions of items.
Managing these cases is not trivial: conflicts in additions
and removals can lead to previously deleted items resurfac-
ing [Sl]. In a replicated environment, these properties must
be ensured across all replicas in a consistent manner. Let
A = {add, remove} be the set of available actions on an item,
and let I be the set of items that a user may buy. Consequently,
A x I represents the set of possible application operations on
the shopping cart. We can define the following application
model:

o Nitgpp = () is the initial model, with no items present in
the cart,

o quETYapp(m) = m is the query function, and returns the
current set of items in the cart, and

o updateqp,(m, (a,t)) the update function, which adds or
removes items from the cart:

mU {i}
m\ {i}

Given an original application model, Echo generates a se-
mantically equivalent replicated model. This model maintains
the original domain-specific properties expressed by the query
and update functions, as illustrated in Figure|l| Echo achieves
this by propagating created operations across all replicas. The
replicated application provides the following five guarantees
when computing the value of the model:

if a = add

updateqpp(m, (a,1)) = { i
if a = remove

« No creation. An operation will only be used to compute
the value if it has previously been generated by a process.

Original 8.8
app. %nodel (inttapp, queryaf)p, upda"teapp)
Echo Domain-specific
properties enforced
Log-based CRDT in these functions
Replicated —
app. model (initrep, quUeTYrep, updaterep)

Fig. 1: Echo transforms an application model into a replicated
application model.

o No duplication. Each operation will not be applied more
than once when computing the value.

o Causal order. If the creation or reception of an operation
01 happens-before [13] the creation of operation o, on
any process, then no participant will apply operation o5
before operation 0; when computing the value.

o Total order. If two processes p and g both apply the
operations o1 and o, to compute the value and p ap-
plies o; before applying o2, then g will apply o; before
applying os.

« Eventual agreement. If a correct participant applies an
operation in the computation of the value or creates an
operation, then all correct participants will eventually
apply this operation in the computation of the value.

These guarantees ensure the liveness and the safety of
the replicated application model. That is, they ensure that
user operations eventually propagate to all correct replicas
(liveness) and that no spurious operations are applied (safety).

III. INSIDE ECHO

Echo automatically generates a replicated application model
from an existing non-replicated one, ensuring strong eventual
convergence. It does so by establishing a causal and total
order for all application operations and eventually enforcing it
across all peers. Subsequently, events are processed following
this total order, resulting in a state that preserves the domain-
specific properties and the guarantees listed in Section [[Il This
order is obtained by constructing a generic CRDT consisting
of a log of operations.

At a high level, this replicated data type is a set pairing each
operation with a logical timestamp, hence establishing a total
and causal order of the operations in the log. Consequently,
two processes with identical CRDT states, i.e., having the
same set of operations, will traverse these operations in the
same total and causal order and compute the same value.

A. State-based CvRDTs

A state-based Convergent Replicated Data Type (CvRDT)
is an object replicated across multiple processes. It includes
an initial state, a query function, an update function, and
a merge function. The query and update functions enable

the process to read and write the state of the local replica.
The CvRDT then employs a broadcast protocol to ensure
that the updated state is eventually gossiped to every correct
process in a fault-tolerant manner. Processes merge remote
updates to their local replicas using the merge function, which
must be commutative, associative, and idempotent. Repeated
applications of the merge function ensures the strong eventual
convergence of the object’s state.

We now define CvRDTs, using the formalism from [18]].
Note that the merge function forms a semi-lattice over the
set S and acts as its upper join.

Definition 2 (State-based object). Let S be the set of states,
U be the set of update operations, and V be the set of
values. A state-based object is a 4-tuple, (inite qs, QUETYerat,
updatecrqr, mergecrqr), where:

o Niterqr € S is the initial state,

o queryerqr - S — V is the query function,

o updatee.qr : U X S — S is the update function, and

o mergecrq: S X S — S is the merge function.

B. Generic log-based CvRDT

Echo leverages a generic CvRDT that contains the log
of operations, each one associated with a unique Lamport
timestamp [13]]. When a new operation is inserted, its asso-
ciated timestamp is computed to be strictly greater than all
the timestamps present in the CvRDT, and associated with
the local site identifier to serve as a disambiguator in case
two timestamps have the same numeric value. The merge
operation is a set union of the operation logs, which guarantees
the strong eventual convergence of the data type, and makes
the CvRDT a specialized GSet [[17]. Thus, processes sharing
identical CvRDT states, i.e., containing the same operations,
traverse these operations in the same causal and total order.

Formally, the set of CVRDT states is defined as follows.
Let E be the set of application operations within the generic
CvRDT, and T, the set of process identifiers. Thus, the state of
the CvRDT is a set of elements from E x (N x I), with each
Lamport timestamp being a natural number. Its initial state
iMiterqs is the empty set 0. Its query function querye,q; tra-
verses all the operations of the set by increasing timestamp and
returns their sequence. Its update function update.,q; assigns
a Lamport timestamp strictly superior to all the timestamps
present in the set at the time of update. Finally, its merge
function merge.,q; is the set union U. The merge,,q4; function
is commutative, idempotent, and associative, so this replicated
object is indeed a CvRDT. Note that the merge.,q; function
will be identical for all the instances of the CvRDT, and does
not have to be defined by the developer.

C. Replicated application model using CvRDTs

Utilizing the log-based generic CvRDT, we can build a
replicated application model derived from the user-provided
model. Intuitively, we use the log-based generic CvRDT to
store all the operations issued to the application model and
replay them in causal and total order when the model is

queried. The inherent properties of the CvRDT ensure that
the application model, once replicated, will guarantee strong
eventual convergence.

Consider a user provided application model denoted as
(initapp, qUEryapp, updateqy,,). We can now instantiate a log-
based CVRDT (initerdr, QUETYerdt, Updatecrqt, mergecrds)
to implement the replicated application model
(initrep, qQUETYrep, update,e,) on a site with identifier I.D.
The initial state of the replicated application model init,.p
has value init.,q, which is the empty set. Algorithms [T]and 2]
detail a possible implementation of the replicated model.

Algorithm 1 query,.,(m): Query function of the replicated
application model

acc < Mitapp

for (operation,ts) <— querycrqt(m) do
acc < updateqpp(ace, operation)

end for

return queryqpp(acc)

> Sorted by increasing
> Lamport timestamp ts

Algorithm [T| shows how query,., computes the application
model’s current value. First, it creates an accumulator, acc,
set to the model’s initial value. Then, the log-based CvRDT
is queried to retrieve all timestamped operations. These op-
erations are sorted by increasing Lamport timestamp and
are being applied consecutively to the accumulator. Finally,
queryqp, performs a query on the accumulator, which makes
sure that the values returned by query,, are of the same type
as the values returned by the original querygy, function. This
strategy maintains domain-specific properties and constraints
by using the original updatey, and queryqy, functions. Thus,
each operation in the CvRDT log is applied exactly once.

By introducing a total and causal ordering with the Lamport
timestamps, Echo always favors operations with the smallest
timestamp. The drawback of this approach is the loss of direct
control by the application developer over the ordering of op-
erations with no causal relationship. The rationale behind this
approach is that, in collaborative applications where conflicts
commonly arise, resolving these issues often requires user
intervention. One strategy consists in blocking the progress
of the application until users resolve the conflict. Another
strategy consists in letting the application make a somewhat
arbitrary decision to resolve the conflict, which might require
replaying some of the users’ actions. This second strategy,
adopted by Echo, has two advantages. Firstly, it prevents the
application from being blocked. Secondly, it relieves applica-
tion developers from the burden of writing specific conflict-
management code. Developers are rarely familiar with the
intricacies of concurrency conflicts and often resort to asking
users to resolve the conflict themselves. This approach can be
seen as an optimistic replication strategy.

Algorithm 2 update,,(m, e): Update function of the repli-
cated application model

ts < (n,ID)
return m U {(e, ts)}

> n is chosen s.t. V(e/, (n’,s")) € m:n >n'

enum class Op { Inc, Dec }
class Application(initialState =
var model = initialState
private fun update (value:
when (op) {
Inc -> value + 1
Dec -> value - 1

0) {

Int, op: Op) =

}

fun increment () {
model = update (model,

}

fun decrement () {
model = update (model,

}

fun query () :

Op.Inc)

Op.Dec)

Int = model

}

enum class Op { Inc, Dec }

class Application(initialState =
val model =
private fun update (value:

suspend

}

suspend

}
}

fun query () :

0) {
mutableSite (initialState, : :update)
Int, op: Op) =
when (op) {
Inc —> value + 1
Dec -> value - 1
}
fun increment () {
model.event { yield(Op.Inc) }

fun decrement () {
model.event { yield(Op.Dec) }

Int = model.value

(a) Original application model of a simple counter (update and
query functions)

(b) Corresponding replicated application model with Echo (code
changes in blue)

Fig. 2: Building a simple replicated counter in Kotlin with Echo.

Algorithm [2] describes updating the state of a generic log-
based CvRDT with a new operation, removing the need for
an explicit merge function. First, it identifies an integer n that
exceeds all existing operation timestamp, to form the Lamport
timestamp associated with the newly inserted operation. Then,
the set of operations in the underlying log-based CvRDT is
updated by adding the new timestamped operation.

The replicated application model construction adheres to the
five properties guaranteed by the Echo framework (Sec. [[).
Firstly, no creation is enforced as operations must be written
to the log via the application model’s update function in order
to be applied in the query function. Secondly, no duplication
is met as each operation is applied only once in the query
function. Thirdly, causal order is maintained as an opera-
tion e; preceding es results in e receiving a higher timestamp.
Fourthly, the total order is consistent across participants with
identical pair of operations due to the increasing timestamps.
Finally, the CvRDT’s strong eventual convergence ensures the
eventual agreement on the state, with all replicas eventually
sharing the same set of operations annd thus computing the
same application model value.

D. Practical implementation considerations

While Section [[II-C| presents Echo’s conceptual implemene-
tation, practical applications necessitate further improvements
and optimizations discussed hereafter.

« Eager aggregation. Because the timestamps define a to-
tal order, a practical implementation of the query function
can be efficiently implemented. Each inserted operation
could be paired with the state of the accumulator before
applying the operation. Upon the insertion of a new
operation, the algorithm would start by skipping to the
accumulator value of the preceeding operation in the total
order, and only recompute a subset of the associated
aggregations. This way, if a single operation was to be
inserted with a timestamp greater than all previously re-

ceived operations, the query result could be incrementally
computed in constant time.

Causality tracking using Hybrid Logical Clocks. By
using a generic operation log, refinements applied to the
underlying operation log will benefit all the application
models implemented on top of Echo. For instance, Echo
uses Hybrid Logical Clocks [[11]], an extension of Lamport
timestamps that respect the happens-before relationship
but can determine a more precise total order of concurrent
operations using physical time.

Domain-specific optimizations. The construction pre-
sented in Section makes no assumptions over the
characteristics or properties of the application opera-
tions. However, some optimizations may be possible.
For example, idempotent operations could be applied
unconditionally by dropping the no duplication property.
Also, commutative operations could be applied in any
order (while preserving causal dependencies), and con-
secutive operations could be represented compactly using
techniques like run-length encoding.

Incremental state propagation. Similarly to a GSet, the
presented generic log-based CvRDT can be incrementally
gossiped since it is a -CRDT [I]]. This optimization is
implemented in the Echo framework.

Garbage collection. If the number of participants in the
system is known in advance and the participants do not
crash, it is possible to implement a garbage collection
scheme for log operations that have been propagated
to all the replicas. In many applications, however, such
as online text editors where users typically connect via
several short sessions on different devices, the number
of participants is unpredictable. Therefore, Echo does
not currently implement this optimization. For specific
use-cases, Echo does however provide a low-level API
that lets developers explicitly purge operations from the
replicated log.

IV. BUILDING APPLICATIONS WITH ECHO

Our goal in designing the Echo API is to allow developers to
seamlessly transition a non-replicated application into a repli-
cated one, while preserving the original application semantics.

Echo comes in the form of a library written in Kotlin
multi-platform and, as a result, can be integrated in JVM-
based applications, mobile applications and Web applications.
It assumes that the application already uses a unidirectional
data flow paradigm, which is for instance the case in the code
pictured in Figure [2} In other words, if the original single-node
application follows the model of Definition |1} replicating it
with Echo only requires minor code patches that do not affect
the implementation of the init,py,, quETyqpp and updateqpy
functions.

The Echo framework is open-source and available at https:
//github.com/markdown-party/mono. It consists of 7699 lines
of Kotlin code, including tests. This comprises its basic
data structures, its replication framework, and bindings for
WebRTC and Websocket peer-to-peer data exchange between
replicas. The Markdown Party editor is written as 4888 lines
of Kotlin code, including tests. Compared to the direct use
of a log-based CRDT, Echo makes it easier to replicate an
application by including an incremental replication protocol
supporting either WebRTC or Websocket as transport layer.

The primary objective of Echo is to be a drop-in library
that does not require architectural changes to allow repli-
cation in an existing single-node application. To reduce the
adoption friction, Echo uses Kotlin’s built-in language features
for asynchronous operations and reactive streams. Moreover,
our framework perfectly preserves the existing application
invariants. If used by one replica (single user, single node),
no operations will ever be reverted and the behavior will be
strictly identical to the one from the original application, which
is something developers expect.

For this, we capitalize on some of Kotlin’s specific features,
including suspending functions for handling asynchronous
operations and Flows as observable reactive streams. In the
following, we illustrate the use of this API and discuss how
we built a complete application with it.

A. Building a simple replicated counter

In Figure [2} a counter application supporting increment and
decrement operations is illustrated. The original counter fol-
lows a uni-directional flow architecture: an update method
holds the application update logic, which combines an op-
eration with the current state, and returns the updated state
(Fig. [24). Note that the initialState variable, as well
as the update and query methods directly map to the
MNMitapp, updateqp, and query,y, definitions in an application
model (Def. [T).

The translation of the program to use the Echo framework
is systematic. The initialState value, update method,
and query method remain untouched (Fig. 2b). The initial
model is wrapped in a MutableSite, which is a generic
type of Echo to represent a replicated state. Updates to the
model are performed using a dedicated API that lets developers

apply one or multiple operations atomically. The model’s value
can be read through the .value property of MutableSite.

Moreover, Echo embraces Kotlin suspending functions to
make operations asynchronous. This makes the model updates
observable (including upon integration of remote updates)
through flows, the language’s feature for observable streams.

B. Building a real-time collaborative editor

Having demonstrated how Echo can be used on a simple
application model, we present how it was used to implement
the replication layer of Markdown PartyE] As showcased
in Figure Markdown Party is a real-time collaborative
Markdown editor that lets users edit text documents in a file
hierarchy. Users see their collaborators’ cursors as they write
and delete text. Moreover, the tree-like file and folder hierarchy
is synchronized for all participants, who can choose to work
online or offline. The application is web-based, local-first [10],
and open-source

1) Document hierarchy invariants: Working on a hierarchy
of text documents organized in directories requires respecting
certain properties: it should not be possible to create cycles in
the document hierarchy (Fig.) or to name several documents
identically within the same folder. For example, concurrent
modifications of a folder’s parent (Fig. b) could result in
creating an impossible cyclic state (Fig. fic).

These semantic properties cannot be guaranteed using exist-
ing CRDTs. For example, an operation of moving documents
in a tree would require the use of a log-based CRDT [9], but
would still have to be extended to support the heterogeneity
of the tree’s elements (directories and files).

Markdown Party uses Echo to handle incompatible opera-
tions: invalid operations are skipped by the application model’s
update function, as depicted in Figure [5] The update function
of an application model must be totally defined. That is, if
the application semantics naturally define a partially-defined
update function u’, then we may replace u’ by a function
f(m,z) = v (m,z) if (m,z) € domw/, or f(m,x) = m
otherwise, which is totally defined on the set of application
operations F.

The choice of skipping operations if they are found to
violate tree invariants is specific to Markdown Party, and
moves are rarely skipped in practice. This strategy is very
similar to that of [9], as concurrent moves in distinct subtrees
will typically not conflict. A noticeable specificity of Echo
is that it does not require the developer to skip conflicting
operations. If the application is able to detect conflicts, it can
apply a resolution strategy chosen by the developer based on
the semantics of the application. Skipped operations are simply
the symptom of the possible mismatch between the operations
that can be generated and applied only when the application is
in specific states, and the operations that can be applied when
the application is in any state.

Zhttps://markdown. party
3https://github.com/markdown-party/mono

https://github.com/markdown-party/mono
https://github.com/markdown-party/mono
https://markdown.party
https://github.com/markdown-party/mono

Collaborative Edition Paper

+ NEW PROJ

ted Data Type for Enforcing Domain-specific Properties

B O
i . Conflict-free Replicated Data Types (CRDTs) are often used to implement optimistic replication
4 However, ma ~“\ tical applications require servation of some domain-specific propertit
v Folder (31
6. In this paper, we introduce Echo, a library that makes it possible to automaticall form ¢
E' ! Echo is based on a generic CRDT ensuring strong eventual convergence while preserving domain-sj

B references.md

Fig. 3: Real-time collaboration in Markdown Party — Each bubble represents the cursor position of a connected user working

collaboratively on the document.

[\
O,

~
o 6 &

(a) Initial state

®
© ()

(b) Concurrent moves (c) Invalid tree

Fig. 4: Concurrent tree edits with unsatisfied invariants

|op,|op;|”1V|ops|

merge

oo e [en [oo ee [o]

|op2|”lV|op7|0ps|

Fig. 5: The incompatible mvp 4 operation is skipped.

2) Insertions and cursor moves atomicity: The atomicity
of some operations (e.g., inserting a character and moving the
cursor) would be lost if the string was implemented with a
list CRDT, and the position of the cursor separately saved
via a last-writer-wins (LWW) register. In Markdown Party,
cursor positions are computed by taking the position of the last
character insertion, deletion, or cursor move operation for each
user. Therefore, the atomicity of the insertion of a character
and the associated cursor movement is guaranteed at no extra
cost. This would not have been the case if two specialized
CRDTs (such as a Replicated Growable Array for the text
and a last-writer-wins register for the last cursor position) had
been used instead, and kept in sync using applicative logic. The
use of the Echo framework allows for finer and more specific
domain control through the instantiation of our generic CRDT
that preserves domain-specific properties.

A benefit of using Echo is that the application developer
does not have to care about how to implement distributed
data structures that are composable, since the framework
essentially treats the whole application model as a single data
structure. This can be seen with the insertion and cursor moves
atomicity: even if the cursor positions and text buffer of the
editor are stored in two distinct data structures, such as a map
and a gap buffer, if the application follows the application
model structure of presented in Section [ITl} all updates across
the two different data structures forming the application state
keep their single-node semantics.

V. PERFORMANCE EVALUATION

To evaluate the performance of Echo, we measured its
throughput on a single-threaded server with an AMD Ryzen
9 5950X processor. All benchmarks were run using the Java
Microbenchmark Harness (JMH) frameworkﬂ with 15 warm-
up iterations followed by 20 measurement iterations. Despite
the benchmarks being designed as single-threaded to enhance
determinism, the usage of Kotlin’s coroutines library enables
the simulation and support of concurrent participants.

The focus of our first experiment was on measuring the an-
ticipated performance of the Echo framework, by determining
whether there were any benefits to employing a commutative
and idempotent application of operations, when the domain-
specific operations allow it (Section [l1I-D)), and on estimating
the overhead of using the default operation serializer to store
operations in the distributed log.

The following variants of a PNCounter [18] were imple-
mented: 1) non-idempotent operations, 2) idempotent opera-
tions with the default serializer, and 3) idempotent operations
with an optimized serializer. We evaluated each variant when
varying the number of replicas connected via a star topology.
In this conservative scenario, each site emitted batches of 500
increments and waited to receive all the increments of the

4https://github.com/openjdk/jmh

https://github.com/openjdk/jmh

remote sites before emitting the next batch. The benchmark
measured the average operation throughput per replica.

Figure [6] illustrates the importance of the implementation
choices to achieve good performance when designing a CRDT:
the PNCounter with idempotent operations and an optimized
serializer processes 3 times more operations per second than
a naively implemented counter. Through additional profiling,
we identified that in the optimized counter, 67.5% of the
time is spent integrating remote operations into the operation
log, and this proportion increases to 79.5% with the naive
implementation. The optimized serializer is simply some code
that outputs the integer binary representation in a byte array
directly. On the other hand, the default serializer is provided
by the kotlinx.serialization framework and uses an
encoding scheme similar to protocol buffers, but with non-
negligible overhead.

Our second experiment measured the performance of Echo
when implementing a tree hierarchy of documents and prevent-
ing the unsatisfied invariants case described in Figure @] from
happening. We evaluated two scenarios: 1) moving random
folders concurrently (Fig. within a hierarchy of 50 pre-
existing folders, and 2) inserting documents with identical
names into a single folder (Fig. [8). For both experiments,
we measured the time until all participants had received
all the operations and eventually reached the same state to
determine the total amount of operations processed per second
by all participants. The participants were organized as a fully
connected network in all measurements.

Figure [/| shows that, when two participants simultaneously

perform 5 concurrent moves each, the system processes up to
1749 operations per second. This number decreases to 513
operations per second when 8 participants are exchanging
messages. However, the results stay equivalent when 10 moves
are performed concurrently and the performance significantly
decreases when 100 move operations are performed con-
currently. This is probably due to the limited number of
folders (50) and the large amount of concurrent moves (100),
which creates more conflicts and requires additional process-
ing time for them to be detected when applying or skipping
the operations (Fig. [5).
Figure [§] also illustrates that the performance obtained when
the participants generate 10 concurrent operations is worse
than when the participants generate 5 concurrent operations.
Here, the invariants to check (the uniqueness of a file name)
are less costly than verifying the tree structure of a graph.

Note that our goal is not to achieve outstanding performance
but rather to show that concurrent applications with rich
semantics built with a generic log-based CRDT framework
can sustain a large number of users with decent performance.

Finally, a key consideration in the evaluation of Echo’s
performance is the impact of the operation log size on the
throughput of operations. As mentioned in Section [[II-D}
our practical implementation eagerly computes the aggregated
model, thus assuming that most concurrent operations will
not require traversing the whole log. Figure [J] illustrates this
property: as the number of operations in the log increases

100,000

1,000

[O Non-idempotent
HODO 1dempotent
D [J1dempotent (opt.)
— e T T T T
2 3 4 5 6

Replica count

Ops. per sec./replica

10

Fig. 6: Comparison of some PNCounter implementations

10,000

100

00 5 moves / site
{00 10 moves / site
[J 0100 moves / site

— TITTTT TITTITT

1 T \ \ \ \ \
2 3 4 5 6 7 8

Replica count

Total ops. per sec.

Fig. 7: Tree operations throughput in Markdown Party: each
replica generates random concurrent moves in a random hier-
archy of 50 folders.

from 1 to 10,000 operations, the total throughput remains
identical, and Echo gracefully scales to handle large and long-
lived collaborative sessions.

VI. RELATED WORK

The idea of using a distributed log has been explored in the
past, starting in systems like Bayou [19]. Kleppman et al. use a
log of events to implement a highly-available move operation
in a tree CRDT [9], and Balegas et. al explore the preservation
of application-specific invariants in [3]. Saquib et al. detail
the use of version trees to represent generic operations as
a log by introducing a total order to guarantee eventual
convergence [15], [L6]. We use the concept of an application
model that maintains domain-specific properties. Markdown
Party’s implementation of a file hierarchy follows the same
principles as [9], but we extend it with more invariants on
the structure of the tree and nodes, such as enforcing the
uniqueness of file names within a folder.

As our application model targets developers, we examined
their practices when building CRDT applications. To do so,
we searched GitHub for repositories matching the following
query: “crdt stars:>20". The 194 result{] belonged to
different categories: libraries, distributed databases, distributed

SLast fetched on 2023-09-08.

100,000

1,000

1 |

00 s insertions / site

{00 10 insertions / site
D [1100 insertions / site

Fig. 8: Tree operations throughput in Markdown Party: each

replica performs random file creations in a single folder.

Total ops. per sec.

10

T T T T T T T
2 3 4 5 6 7 8

Replica count

g
T T T T 1117 T T T TT1TT] T T T TITT] T L
~ 38 ° ° PY 1
= L @ @
5 H;———. . .A
St s Y &
o F— rd + ird
(=% > + 3 +
g :::::::::i:::::::::i::::::::::.:::::::::
gs
5 =
(=%
5
= —@— 2 sites —l— 3 sites —@— 4 sites
E —&— 5 sites —4— 6 sites — @ - 7 sites
= - - - 8 sites
— Lol L L I
1 10 100 1,000 10,000

Current log size (ops.)

Fig. 9: Evolution of throughput with increasing log size

caches, collaborative applications, academic experiments, doc-
umentation and tutorials.

Some of the most popular libraries, such as Automerge and
Yjs, were listed among the top results. These libraries usually
implement robust and predefined data structures (e.g., coun-
ters, sets, lists, etc.) and require the developers to choose the
best one for their domain model. Automerge is modeled around
OpSets [8]], which represent causally and totally ordered
operations, but does not offer an API to build replicated data
types. These data structures are often used by other projects.
For instance, Peritext builds upon Automerge and introduces an
algorithm consisting of three parts: generating operations, ap-
plying operations, and producing a document [[14]. Likewise,
several collaborative applications listed among the results
rely on ipfs-loﬂ an operation-based append-only log CRDT
persisted on IPFS. Our work builds on these approaches by
defining the properties of a replicated application model, and
proposing a framework that uses a CRDT to replicate any ap-
plication model or simulate any existing CRDT. Unlike these
frameworks, Echo does not require changing the internal data
structures of the application nor a complete rewrite. Instead, it
leverages the existing application logic and can be used as-is
with very little effort if the application already already follows
a unidirectional data flow programming paradigm.

Shttps://github.com/orbitdb/ipfs-log

Many projects and libraries aim at facilitating the creation
of local first software [10]. In general, the intention is to
hide the complexity of building a distributed application with
abstractions. For instance, the Blazes framework [2] analyzes
programs to find areas needing coordination and automatically
synthetizes the necessary coordination code. More recently,
the Katara system introduced an approach that synthesizes
CRDTs on the basis of a user-defined sequential type [12],
hence enabling the generation of CRDTs for specific domains.
Evol exposes a mutation-based APL Cred enables the user
to define custom data structures with a reducer-based API.
Crdx’| uses a reducer to resolve conflicts involving several
properties. Our work builds upon similar ideas and introduces
formal definitions.

VII. CONCLUSION AND FUTURE WORK

In this demonstration paper, we introduced Echo, a frame-
work that allows replicating applications with domain-specific
properties. We defined the concept of an application model,
an abstraction that models domain-specific operations, and
a generic state-based CvRDT that replicates any application
model. Our approach uses a generic and strongly eventually
convergent operation log, by introducing a causal and total
order on the domain-specific operations.

Two promising avenues for future work would include the
automatic detection of the commutativity of domain opera-
tions, so the framework could apply the aggregated operations
more efficiently to the model, and the automatic elimination
of operations which can not change the state when applied.

REFERENCES

[1] Paulo Sérgio Almeida, Ali Shoker, and Carlos Baquero. Delta State
Replicated Data Types. Journal of Parallel and Distributed Computing,
111:162-173, January 2018. arXiv:1603.01529 [cs]. URL: http://arxiv.
org/abs/1603.01529] [do1:10.1016/7. jpdc.2017.08.003

[2] Peter Alvaro, Neil Conway, Joseph M. Hellerstein, and David Maier.
Blazes: Coordination Analysis and Placement for Distributed Programs.
ACM Transactions on Database Systems, 42(4):23:1-23:31, October
2017. URL: https://dl.acm.org/doi/10.1145/3110214, doi:10.1145/
3110214,

[3] Valter Balegas, Sérgio Duarte, Carla Ferreira, Rodrigo Rodrigues, and
Nuno Preguica. IPA: invariant-preserving applications for weakly
consistent replicated databases. Proceedings of the VLDB Endowment,
12(4):404-418, December 2018. URL: https://dl.acm.org/doi/10.14778/
3297753.3297760, |do1:10.14778/3297753.3297760.

[4] Christian Cachin, Rachid Guerraoui, and Luis Rodrigues. Introduction to
Reliable and Secure Distributed Programming. Springer, Berlin, Heidel-
berg, 2011. URL.: http:/link.springer.com/10.1007/978-3-642-15260-3,
doi:10.1007/978-3-642-15260-3\

[5] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan
Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubra-
manian, Peter Vosshall, and Werner Vogels. Dynamo: amazon’s highly
available key-value store. ACM SIGOPS Operating Systems Review,
41(6):205-220, October 2007. |doi:10.1145/1323293.1294281]

[6] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility
of consistent, available, partition-tolerant web services. ACM SIGACT
News, 33(2):51-59, June 2002. |do1:10.1145/564585.564601}

[7]1 Joseph M. Hellerstein and Peter Alvaro. Keeping CALM: when
distributed consistency is easy. Communications of the ACM, 63(9):72—
81, August 2020. do1:10.1145/3369736.

"https://github.com/evoluhg/evolu
8https://github.com/eldh/credt
9https://github.com/HerbCaudill/crdx

https://github.com/orbitdb/ipfs-log
http://arxiv.org/abs/1603.01529
http://arxiv.org/abs/1603.01529
https://doi.org/10.1016/j.jpdc.2017.08.003
https://dl.acm.org/doi/10.1145/3110214
https://doi.org/10.1145/3110214
https://doi.org/10.1145/3110214
https://dl.acm.org/doi/10.14778/3297753.3297760
https://dl.acm.org/doi/10.14778/3297753.3297760
https://doi.org/10.14778/3297753.3297760
http://link.springer.com/10.1007/978-3-642-15260-3
https://doi.org/10.1007/978-3-642-15260-3
https://doi.org/10.1145/1323293.1294281
https://doi.org/10.1145/564585.564601
https://doi.org/10.1145/3369736
https://github.com/evoluhq/evolu
https://github.com/eldh/credt
https://github.com/HerbCaudill/crdx

[8

[9

—

[10

(11]

(12]

[13

[tr?

[14]

[15

[16]

[17

[18]

[19]

Martin Kleppmann, Victor B. F. Gomes, Dominic P. Mulligan, and
Alastair R. Beresford. OpSets: Sequential Specifications for Repli-
cated Datatypes (Extended Version), May 2018. arXiv:1805.04263
[cs]. URL: http://arxiv.org/abs/1805.04263,|do1:10.48550/arXiv.
1805.04263.

Martin Kleppmann, Dominic P. Mulligan, Victor B. F. Gomes, and
Alastair R. Beresford. A Highly-Available Move Operation for Repli-
cated Trees. [EEE Transactions on Parallel and Distributed Systems,
33(7):1711-1724, July 2022. Conference Name: IEEE Transactions
on Parallel and Distributed Systems. doi:10.1109/TPDS.2021.
31186031

Martin Kleppmann, Adam Wiggins, Peter van Hardenberg, and Mark
McGranaghan. Local-first software: you own your data, in spite
of the cloud. In Proceedings of the 2019 ACM SIGPLAN Inter-
national Symposium on New Ideas, New Paradigms, and Reflections
on Programming and Software, Onward! 2019, pages 154-178, New
York, NY, USA, October 2019. Association for Computing Machinery.
doi:10.1145/3359591.3359737,

Sandeep S. Kulkarni, Murat Demirbas, Deepak Madappa, Bharadwaj
Avva, and Marcelo Leone. Logical Physical Clocks. In Marcos K.
Aguilera, Leonardo Querzoni, and Marc Shapiro, editors, Principles of
Distributed Systems, Lecture Notes in Computer Science, pages 17—
32, Cham, 2014. Springer International Publishing. |doi:10.1007/
978-3-319-14472-6_2.

Shadaj Laddad, Conor Power, Mae Milano, Alvin Cheung, and
Joseph M. Hellerstein. Katara: Synthesizing CRDTs with Verified
Lifting, September 2022. arXiv:2205.12425 [cs]. URL: http://arxiv.
org/abs/2205.12425,

Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM, 21(7):558-565, July 1978. doi:
10.1145/359545.359563.

Geoffrey Litt, Sarah Lim, Martin Kleppmann, and Peter van Hardenberg.
Peritext: A CRDT for Collaborative Rich Text Editing. Proceedings of
the ACM on Human-Computer Interaction, 6(CSCW2):1-36, November
2022. URL: https://dl.acm.org/doi/10.1145/3555644, doi:10.1145/
3555644,

Nazmus Saquib, Chandra Krintz, and Rich Wolski. Log-Based
CRDT for Edge Applications. In 2022 IEEE International Confer-
ence on Cloud Engineering (IC2E), pages 126-137, September 2022.
URL: https://ieeexplore.ieee.org/document/9946360, doi:10.1109/
IC2E55432.2022.00021.

Nazmus Saquib, Chandra Krintz, and Rich Wolski. Ordering operations
for generic replicated data types using version trees. In Proceedings
of the 9th Workshop on Principles and Practice of Consistency for
Distributed Data, PaPoC 22, pages 39-46, New York, NY, USA,
April 2022. Association for Computing Machinery. doi:10.1145/
3517209.3524038!

Marc Shapiro, Nuno Preguica, Carlos Baquero, and Marek Zawirski. A
comprehensive study of Convergent and Commutative Replicated Data
Types. report, INRIA, January 2011. Pages: 50. URL: https://hal.inria.
fr/inria-00555588.

Marc Shapiro, Nuno Preguica, Carlos Baquero, and Marek Zawirski.
Conflict-Free Replicated Data Types. In Xavier Défago, Franck
Petit, and Vincent Villain, editors, Stabilization, Safety, and Secu-
rity of Distributed Systems, Lecture Notes in Computer Science,
pages 386—400, Berlin, Heidelberg, 2011. Springer. doi1:10.1007/
978-3-642-24550-3_209,

D. B. Terry, M. M. Theimer, Karin Petersen, A. J. Demers, M. J.
Spreitzer, and C. H. Hauser. Managing update conflicts in Bayou, a
weakly connected replicated storage system. In Proceedings of the
fifteenth ACM symposium on Operating systems principles, SOSP 95,
pages 172-182, New York, NY, USA, December 1995. Association
for Computing Machinery. URL: https://dl.acm.org/doi/10.1145/224056.
224070, doi1:10.1145/224056.224070.

http://arxiv.org/abs/1805.04263
https://doi.org/10.48550/arXiv.1805.04263
https://doi.org/10.48550/arXiv.1805.04263
https://doi.org/10.1109/TPDS.2021.3118603
https://doi.org/10.1109/TPDS.2021.3118603
https://doi.org/10.1145/3359591.3359737
https://doi.org/10.1007/978-3-319-14472-6_2
https://doi.org/10.1007/978-3-319-14472-6_2
http://arxiv.org/abs/2205.12425
http://arxiv.org/abs/2205.12425
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563
https://dl.acm.org/doi/10.1145/3555644
https://doi.org/10.1145/3555644
https://doi.org/10.1145/3555644
https://ieeexplore.ieee.org/document/9946360
https://doi.org/10.1109/IC2E55432.2022.00021
https://doi.org/10.1109/IC2E55432.2022.00021
https://doi.org/10.1145/3517209.3524038
https://doi.org/10.1145/3517209.3524038
https://hal.inria.fr/inria-00555588
https://hal.inria.fr/inria-00555588
https://doi.org/10.1007/978-3-642-24550-3_29
https://doi.org/10.1007/978-3-642-24550-3_29
https://dl.acm.org/doi/10.1145/224056.224070
https://dl.acm.org/doi/10.1145/224056.224070
https://doi.org/10.1145/224056.224070

	Introduction
	The Echo framework
	Inside Echo
	State-based CvRDTs
	Generic log-based CvRDT
	Replicated application model using CvRDTs
	Practical implementation considerations

	Building applications with Echo
	Building a simple replicated counter
	Building a real-time collaborative editor
	Document hierarchy invariants
	Insertions and cursor moves atomicity

	Performance evaluation
	Related work
	Conclusion and future work
	References

